

PRODUITS DE SÉCURITÉ

Complément au dossier de Régularisation de Demande d'Autorisation d'Exploiter

Février 2018

Etude de danger

ETABLISSEMENT		G. DEVEYCX					А
MODIFICATIONS	DATE	ETABLI	DATE	VERIFIE	DATE	APPROUVE	REV.

Etude de danger

SOMMAIRE

1.	INTROD	UCTION	9
2.	RAPPEI	DU CADRE REGLEMENTAIRE ET DES OUTILS UTILISES	10
3.	DESCRI	PTION ET CARACTERISATION DU SITE	11
	3.1.	CIBLES POTENTIELLES	11
	3.1.1.	Etablissements industriels voisins	
	3.1.2.	Etablissements recevant du public	
	3.1.3.	Habitations individuelles voisines	
	3.1.4.	Axes de communication	
	3.1.5.	Milieu naturel	
	3.2.	SOURCES EXTERNES DE DANGERS	19
	3.2.1.	Etablissements industriels voisins	
	3.2.2.	Axes de transport de matières dangereuses (TMD)	
	3.2.3.	Chute d'aéronefs	
	3.2.4.	Servitude d'Utilités Publiques	
	3.2.5.	Malveillance	
	3.2.6.	Phénomènes naturels Traitement spécifique de certains événements initiateurs	
	3.2.7. 3.3.	DESCRIPTION DES INSTALLATIONS	
	3.3.	DESCRIPTION DES INSTALLATIONS	32
4.	IDENTIF	FICATION ET CARACTERISATION DES POTENTIELS DE DANGERS	33
	4.1.	GENERALITES	33
	4.1.1.	Incendie	33
	4.1.2.	Explosion	
	4.1.3.	Pollutions accidentelles	
	4.2.	DANGERS LIES AUX PRODUITS ET MATIERES	40
	4.2.1.	L'acétylène	
	4.2.2.	L'oxygène	
	4.2.3.	Le gaz naturel	
	4.2.4.	Traction force plus	
	4.2.5.	Le bain de flux	
	4.2.6. 4.2.7.	Le bain de dézingage Le Bain de Décapage	
	4.2.8.	Produits additifs pour les bains	
	4.2.9.	Peroxyde d'hydrogène en solution	
	4.2.10.	Acide Chlorhydrique 30/36%	
	4.2.11.	Poudre thermodurcissable	
	4.2.12.	Lubrifiants	44
	4.2.13.	Enermix	44
	4.3.	INCOMPATIBILITES ENTRE LES PRODUITS	48
	4.4.	APPRECIATION DES DANGERS LIES AUX ACTIVITES	49
	4.4.1.	Risques liés aux bains de prétraitement et de galvanisation	
	4.4.2.	Risques liés au thermolaquage	
	4.4.3.	Risques liés à la partie fabrication	50

Etude de danger

	4.4.4.	Risques lies aux installations de combustion	50
	4.4.5.	Risques liés aux installations de compression d'air	
	4.4.6.	Risques liés aux installations de charge d'accumulateur	
	4.4.7.	Risques liés à la circulation interne	
	4.5.	SOURCES D'ACCIDENTS	54
	4.5.1.	Généralités sur les dangers d'incendie et d'explosion	
	4.5.2.	Electricité statique	
	4.5.3.	Electrisation du corps humain	
	4.5.4.	Foudre	
	4.5.5.	Courants vagabonds	
	4.5.6. 4.5.7.	Points chaudsFacteur humain	
	4.5.7. 4.5.8.	Zones à risque d'explosion	
	4.5.9.	Défaillance des utilités	
	4.6.	CARTOGRAPHIE DES POTENTIELS DE DANGER ET DES CIBLES	
	4.6.1.	Localisation des cibles	
	4.6.1. 4.6.2.	Localisation des cibles	
	4.7.	REDUCTION DES POTENTIELS DE DANGER	
	4.7.1. 4.7.2.	Principe de substitution	
	4.7.2. 4.7.3.	Principe d'intensification Principe d'atténuation	
	4.7.4.	Limitation des effets	
	4.8.	ENSEIGNEMENTS TIRES DU RETOUR D'EXPERIENCE	
	4.8.1.	Etude accidentologique	
	4.8.2.	Conclusions	
	4.8.3.	Inventaires des accidents industriels survenus chez AXIMUM	
	4.9.	SYNTHESE DES PHENOMENES DANGEREUX ASSOCIES AU SITE AXIMUM	
5.	METHO	DE D'ANALYSE DE RISQUES APPLIQUEE	74
	5.1.	LA METHODE MISE EN OEUVRE	74
	5.1.1.	Identification des scénarios d'accidents	74
	5.1.2.	Prise en compte des barrières de sécurité	74
	5.1.3.	Sélection des scénarios de références	
	5.2.	LES GRILLES DE COTATION	76
	5.2.1.	Définition des niveaux de probabilité	76
	5.2.2.	Définition des niveaux de gravité	
	5.2.3.	Règles de décote	
	5.2.4.	Matrice d'acceptabilité	80
6.	MISE EI	N OEUVRE DE L'ANALYSE DES RISQUES	
	6.1.	ANALYSE PRELIMINAIRE DES RISQUES (APR) :	82
	6.2.	SYNTHESE DES PHENOMENES DANGEREUX ASSOCIES AU SITE AXIMUM	82
	6.3.	ACCEPTABILITE DU RISQUE	92
7.		ATION DES CONSEQUENCES DE LA LIBERATION DES POTENTIELS DE DANG E DES SCENARIOS DE REFERENCE	
	7.1.	VALEURS DE REFERENCE DES SEUILS D'EFFETS DES PHENOMENES	
		DANGEREUX	94

Etude de danger

	7.1.1.	Seuils des effets thermiques	94
	7.1.2.	Seuils des effets de surpression	95
	7.1.3.	Seuils des effets toxiques	95
	7.2.	MODELISATIONS DES EFFETS DE LA LIBERATION DES POTENTIELS DE	
		DANGERS	95
	7.2.1.	Méthodes de calculs	
	7.2.2.	Feu de nappe de la rétention de GNR – PhD 1	
	7.2.3.	Explosion de poussières dans la cabine de peinture – PhD 2	
	7.2.4.	Rupture de la tuyauterie de gaz d'alimentation du four galvanisation – PhD 3a et 3b	
	7.2.5.	Rupture de la tuyauterie de gaz d'alimentation de la chaudière eau chaude – PhD 4a et 4	
	7.2.6.	Rupture de la tuyauterie de gaz d'alimentation du thermolaquage dans le bâtiment galva	
	– PhD : 7.2.7.	5a et 5bRupture de la tuyauterie de gaz d'alimentation du thermolaquage en façade extérieure de	
	l'atelier	- PhD 6a et 6b	
8.	ANALY	SE DETAILLEE DES RISQUES	142
9.	DESCR	IPTION DES MOYENS DE PREVENTION, DE PROTECTION ET	
		RVENTION	142
	9.1.	DISPOSITIONS GENERALES DE PREVENTION	142
	9.2.	DISPOSITIONS CONSTRUCTIVES	143
	9.3.	MESURES DE PREVENTION ET PROTECTION SPECIFIQUES AUX ACTIVIT	ES143
	9.3.1.	Mesures de prévention et protection liées à la galvanisation	143
	9.3.2.	Mesures de prévention et protection liées au thermolaquage	143
	9.3.3.	Mesures de prévention et protection liées aux installations de combustion	
	9.3.4.	Mesures de prévention et protection liées au stockage de GNR	
	9.3.5.	Mesures de prévention et protection liées aux postes oxygène/acétylène	
	9.3.6.	Mesures de prévention et protection liées aux postes de charge d'accumulateurs	
	9.3.7.	Mesures de prévention et protection liées au stockage d'huile	
	9.4.	MOYENS D'INTERVENTION	147
	9.4.1.	Moyens de lutte contre l'incendie.	
	9.4.2.	Moyens de lutte contre les pollutions accidentelles	
	9.4.3. 9.5.	Plan d'Urgence POLITIQUE DE PREVENTION DES ACCIDENTS MAJEURS (PPAM)	

Etude de danger

LISTE DES FIGURES

Figure 1 : ERP à proximité du site	13
Figure 2 : Réseau Fluvial	14
Figure 3 : Réseau Ferroviaire près du site	15
Figure 4 : Réseau ferroviaire près du site	16
Figure 5 : Localisation des comptages routiers	17
Figure 6 : Accès au site	18
Figure 7 : Températures à Creil de 1973 à 2016	23
Figure 8 : Précipitations à Creil de 1973 à 2016	24
Figure 9 : Carte de zonage réglementaire PPRI de la Oise, section Brenouille – Boran sur Oise	25
Figure 10 : Zonage sismique	26
Figure 11 : Répartition du vent - Station de Creil (période 2009-2016)	27
Figure 12 : Carte des zones de vent	28
Figure 13 : Carte des zones de neige	29
Figure 14 : Plan de protection préconisé	31
Figure 15 : Triangle du feu	33
Figure 16 : Risque électricité statique	55
Figure 17:Localisation des cibles	61
Figure 18: Localisation des potentiels de danger	63
Figure 19 : " Traitement et revêtement des métaux " – phénomènes dangereux	65
Figure 20 : " Traitement et revêtement des métaux " – causes premières	65
Figure 21 : " Structures métalliques et de parties de structures " – phénomènes dangereux	66
Figure 22 : " Structures métalliques et de parties de structures " – causes premières	67
Figure 23 : Effets thermiques de l'incendie de la cuve GNR (aérienne)	97
Figure 24 : Effets de surpression de l'explosion de poussières dans la cabine de peinture	100
Figure 25 : Evolution du débit de gaz	103
Figure 26 : Vue en coupe du nuage de gaz (condition météorologique F3)	104
Figure 27 : Distance au seuil d'effets irréversibles – effets de surpression (condition météorologique F3)	107
Figure 28 : Effets de surpression de la tuyauterie de gaz d'alimentation du four galvanisation	109
Figure 29 : Flux thermique en fonction de la distance (condition météorologique F3)	110
Figure 30 : Evolution du débit de gaz	113
Figure 31 : Vue en coupe du nuage de gaz (condition météorologique F3)	114

Etude de danger

Figure 32 : Distance au seuil d'effets irreversibles – effets de surpression (condition météorologique F3)	. 117
Figure 33 : Effets de surpression de la tuyauterie de gaz d'alimentation de la chaudière	. 119
Figure 34 : Flux thermique en fonction de la distance (condition météorologique F3)	. 119
Figure 35 : Evolution du débit de gaz	. 122
Figure 36 : Vue en coupe du nuage de gaz (condition météorologique F3)	. 123
Figure 37 : Distance au seuil d'effets irréversibles – effets de surpression (condition météorologique F3)	. 126
Figure 38 : Effets de surpression de la tuyauterie de gaz d'alimentation du thermolaquage de le bâtiment galvanisation	
Figure 39 : Flux thermique en fonction de la distance (condition météorologique F3)	. 129
Figure 40 : Evolution du débit de gaz	. 132
Figure 41 : Vue en coupe du nuage de gaz (condition météorologique F3)	. 133
Figure 42 : Vue en coupe du nuage de gaz (condition météorologique D5)	. 133
Figure 43 : Distance au seuil d'effets irréversibles – effets de surpression (condition météorologique F3)	. 136
Figure 44 : Distance au seuil d'effets irréversibles – effets de surpression (condition météorologique D5)	. 137
Figure 45 : Effets de surpression de la tuyauterie de gaz d'alimentation du thermolaquage e façade extérieure de l'atelier	
Figure 46 : Flux thermique en fonction de la distance (condition météorologique F3)	. 140
Figure 47 : Flux thermique en fonction de la distance (condition météorologique F3)	. 140
Figure 48 : Accès au site	. 148

Etude de danger

LISTE DES TABLEAUX

Tableau 1 : Etablissements industriels classés voisins	
Tableau 2 : ERP à proximité du site	
Tableau 3: Etablissements industriels voisins	19
Tableau 4 : Caractéristiques de l'acétylène	41
Tableau 5 : Caractéristiques du gaz naturel	41
Tableau 6 : Caractéristiques du GNR	
Tableau 7 : Caractéristiques de poudre thermodurcissable	44
Tableau 8 : Mentions et pictogrammes de dangers des produits	47
Tableau 9 : Matrice d'incompatibilité des produits chimiques	48
Tableau 10 : Caractéristiques d'inflammabilité de l'hydrogène	52
Tableau 11 : Défaillance des utilités	59
Tableau 12: Inventaire des activités proches d'Aximum	60
Tableau 13 : " Traitement et revêtement des métaux " - nature des accidents	64
Tableau 14 : " Structures métalliques et de parties de structures " - nature des accidents	66
Tableau 15 : Accidents comparables aux activités d'AXIMUM	71
Tableau 16 : Classes de probabilité	77
Tableau 17 : Classes de probabilité	77
Tableau 18 : Exemples de décotes de sécurités passives	79
Tableau 19 : Exemples de décotes de sécurités actives	80
Tableau 20 : Matrice de criticité	80
Tableau 21 APR	91
Tableau 22 : Grille acceptabilité	92
Tableau 23 : Liste des phénomènes dangereux modélisés	93
Tableau 24 : Seuils d'effets thermiques sur les structures et l'homme	94
Tableau 25 : Seuils d'effets de surpression sur les structures et l'homme	95
Tableau 26 : Seuils d'effets toxiques sur l'homme	95
Tableau 27: Distances d'effets thermiques – PhD1	97
Tableau 28 : Ordre de grandeurs de la résistance des matériaux	98
Tableau 29: Distances d'effets de surpression – PhD 2	99
Tableau 30 : Hypothèses	101
Tableau 31 : Données climatologiques	101
Tableau 32 : Caractéristiques de la dispersion de méthane	103
Tableau 33 : Vitesse de combustion de différents combustibles gazeux en proportion stœchiométrique	avec
l'air	105
Tableau 34 : Indices de sévérité indicatifs	106
Tableau 35 : Distances d'effets de surpression	107
Tableau 36 : Distances d'effets thermiques – UVCE	108
Tableau 37 : Distances d'effets retenues pour l'UVCE	108
Tableau 38 : Longueur de flamme - Jet enflammé	110
Tableau 39 : Hypothèses	111
Tableau 40 : Données climatologiques	112
Tableau 41 : Caractéristiques de la dispersion de méthane	113

Etude de danger

Tableau 42 : Vitesse de combustion de différents combustibles gazeux en proportion stœchio	metrique avec
l'air	115
Tableau 43 : Indices de sévérité indicatifs	116
Tableau 44 : Distances d'effets de surpression	117
Tableau 45 : Distances d'effets thermiques – UVCE	118
Tableau 46 : Distances d'effets retenues pour l'UVCE	118
Tableau 47 : Longueur de flamme - Jet enflammé	119
Tableau 48 : Hypothèses	
Tableau 49 : Données climatologiques	121
Tableau 50 : Caractéristiques de la dispersion de méthane	122
Tableau 51 : Vitesse de combustion de différents combustibles gazeux en proportion stœchio	métrique avec
l'air	124
Tableau 52 : Indices de sévérité indicatifs	125
Tableau 53 : Distances d'effets de surpression	126
Tableau 54 : Distances d'effets thermiques – UVCE	127
Tableau 55 : Distances d'effets retenues pour l'UVCE	127
Tableau 56 : Longueur de flamme - Jet enflammé	129
Tableau 57: Hypothèses	130
Tableau 58 : Données climatologiques	
Tableau 59 : Caractéristiques de la dispersion de méthane	132
Tableau 60 : Vitesse de combustion de différents combustibles gazeux en proportion stœchio	métrique avec
l'air	134
Tableau 61 : Indices de sévérité indicatifs	136
Tableau 62 : Distances d'effets de surpression	137
Tableau 63 : Distances d'effets thermiques – UVCE	
Tableau 64 : Distances d'effets retenues pour l'UVCE	139
Tableau 65 : Longueur de flamme - Jet enflammé	
Tableau 66 : Liste des effets dominos potentiels	141
Tableau 67 : Dispositions constructives	143

Etude de danger

1. INTRODUCTION

L'étude des dangers expose les dangers que peuvent présenter les installations en cas d'accident, en présentant une description des accidents susceptibles d'intervenir sur le site que leur cause soit d'origine interne ou externe, et en décrivant la nature et l'extension des conséquences. L'étude des dangers est élaborée de manière à répondre aux dernières évolutions réglementaires. Dans cette optique, elle comprend les étapes suivantes :

- Description et caractérisation de l'environnement en distinguant l'environnement comme source potentielle d'agression et l'environnement comme cible.
- Identification et caractérisation des potentiels de dangers liés :
 - Aux produits,
 - Aux équipements et installations,
 - Aux analyses des antécédents d'accidents sur les sites mettant en œuvre des installations, des produits et des procédés comparables.
- Analyse des potentiels de dangers et des principales dispositions de réduction des potentiels de dangers. Cette partie vise à présenter les dispositions prises pour, d'une part, supprimer ou substituer aux procédés dangereux, à l'origine des dangers potentiels, des procédés ou produits présentant des dangers moindres et/ou, d'autre part, réduire autant que possible les quantités de matières en cause.
- Evaluation des risques, caractérisation et classement des différents phénomènes et des accidents potentiels en terme d'intensité des effets des phénomènes, de gravité des conséquences des accidents, de probabilité et de cinétique de développement en tenant compte des performances des mesures de prévention et de protection, évolution et mesures d'amélioration proposées par l'exploitant,
- Méthodes et moyens de calcul utilisés pour la modélisation des phénomènes dangereux.
- Modélisation des conséquences des phénomènes dangereux associées aux potentiels de dangers notables identifiés (estimation des conséquences de la matérialisation des dangers).
 L'objectif de cette étape est de modéliser les conséquences des phénomènes dangereux maximum, représentatifs des potentiels de danger et totalement découplés du niveau de maîtrise des risques par l'exploitant et des barrières de sécurité actives existantes.
- Evaluation de la gravité, de la probabilité et de la cinétique des phénomènes dangereux et identification de ceux nécessitant une étude détaillée (phénomènes dangereux générant des effets à l'extérieur du site).
- Description des mesures générales de prévention des risques.
- Description des méthodes et moyens d'intervention.
- Etude détaillée des risques et évaluation de la probabilité d'occurrence et de la cinétique des phénomènes dangereux.

Etude de danger

2. RAPPEL DU CADRE REGLEMENTAIRE ET DES OUTILS UTILISES

La présente étude de dangers prend notamment en compte les textes réglementaires suivants :

- L'arrêté du 29 septembre 2005 relatif à l'évaluation et à la prise en compte de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classées soumises à autorisation.
- La loi du 30 juillet 2003 relative à la prévention des risques technologiques et naturels,
- La Circulaire du 10 mai 2010 récapitulant les règles méthodologiques applicables aux études de dangers, à l'appréciation de la démarche de réduction du risque à la source et aux plans de prévention des risques technologiques (PPRT) dans les installations classées en application de la loi du 30 juillet 2003.
- L'arrêté du 26 mai 2014 relatif à la prévention des accidents majeurs dans les installations classées mentionnées à la section 9, chapitre V, titre ler du livre V du code de l'environnement.

Le contenu de cette étude de dangers est en relation avec l'importance des dangers des installations et de leurs conséquences prévisibles en cas de sinistre.

Etude de danger

3. DESCRIPTION ET CARACTERISATION DU SITE

3.1. CIBLES POTENTIELLES

3.1.1. Etablissements industriels voisins

Le site AXIMUM est implanté en zone industrielle, il y a donc des activités industrielles et commerciales aux alentours du site.

Détail des établissements industriels classés dans un rayon proche :

Etablissement concerné	Activité	Classement ICPE	Distance / site	Orientation / site
NATURECO	Traitement et revalorisation des déchets verts.	Autorisation	915 m	Sud
NSO ENERGIES	Production d'électricité	Autorisation	1 500 m	Sud
SIMO ARRANZ	Préparation industrielle de produits à base de viande	Autorisation	860 m	Sud
UNION CREIL CEREALES	Entreposage et stockage non frigorifique	Autorisation	350 m	Sud
VEOLIA PROPRETE NORMANDIE	Collecte de déchets non dangereux	Autorisation	1 100 m	Sud
ARKEMA	Production de résines photoréticulables	Autorisation Seveso SH	1 500 m	Nord-Est
CHEMOURS France	Fabrication de produits chimiques	Autorisation Seveso SB	1 500 m	Nord-Est
DOW France	Fabrication de matières plastiques de base	Autorisation Seveso SB	1 500 m	Nord-Est
ESIANE	Traitement et élimination de déchets non dangereux	Autorisation	700 m	Est
GRISET	Fabrication de bandes de cuivre et d'alliages non ferreux	Autorisation	550 m	Nord-Ouest
PICARDIE LAVAGE CITERNE	Nettoyage des bâtiments	Autorisation	1 000 m	Est
SUEZ EAU INDUSTRIELLE	Traitement de l'eau et des effluents industriels	Autorisation	1 500 m	Est
TOYO INK EUROPE SPECIALITY CHEMICALS	Fabrication de colorants et pigments	Autorisation	1 500 m	Nord-Est

Tableau 1 : Etablissements industriels classés voisins

Ces installations sont suffisamment éloignées pour ne pas être impactées par un accident sur le site AXIMUM.

Etude de danger

3.1.2. Etablissements recevant du public

Quelques ERP sont situés à proximité du site.

Etablissement	Туре	Distance / site	Orientation / site	Repère
Auchan drive (+ station service)	М	250 m	Ouest	1
DACIA	М	50 m	Nord	2
MONDIAL PARE BRISE	М	170 m	Ouest	3
Point P	М	200 m	Sud-Ouest	4
SFCP FICOP	М	100 m	Sud-Ouest	6
Aubade	М	100 m	Sud-Ouest	7
Bossu Cuvelier Prolians	М	150 m	Sud	8
Complexe sportif Georges Lenne	PA	480 m	Ouest	9
Centre Nautique	X	550 m	Ouest	10
EHPAD	J	700 m	Ouest	11
CFA chambre de commerce et d'industries de l'Oise	R	600 m	Sud	12
Restaurant la Palme	N	50 m	Sud	13

R : Établissements d'éveil, d'enseignement, de formation, centres de vacances, centres de loisirs sans hébergement

Tableau 2 : ERP à proximité du site

PA: Établissement de plein air
X: Établissement sportif clos et couvert, salle omnisports, patinoire, manège, piscine couverte, transformable ou mixte

M : Magasin de vente et centre commercial

J : Structure d'accueil pour personnes âgées

N : Restaurants et débits de boisson

Etude de danger

Figure 1 : ERP à proximité du site

Sources : Géoportail

3.1.3. Habitations individuelles voisines

Les premières zones d'habitations sont situées à 600 m du site au Sud-Ouest.

3.1.4. Axes de communication

Axes fluviaux

La commune de Nogent-sur-Oise est bordée au Sud-Est par l'Oise. Cette rivière prend sa source en Belgique, dans la région géologique Calestienne. C'est le principal affluent de la Seine.

L'Oise passe à environ 350 m au Sud-Est du site. Au Nord-Est du site, à environ 330 m passe la Brèche, petite rivière et affluent de l'Oise. La Brèche n'est cependant pas une voie navigable

Etude de danger

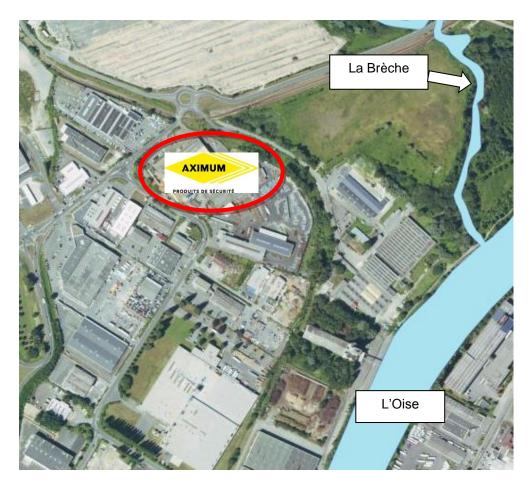


Figure 2 : Réseau Fluvial

Source : Géoportail

Axes ferroviaires

La commune de Nogent-sur-Oise est desservie par le réseau ferroviaire. La gare de Creil, limitrophe à Nogent-sur-Oise (fret et voyageurs), est située à 1200 m du site AXIMUM au Sud-Ouest.

La ligne de chemin de fer la plus proche (axe Paris-Compiègne) est située au Nord-Ouest du site, à 450 m, et un arrêt voyageur est présent pour desservir Villers-Saint-Paul, à 620 m du site.

Etude de danger

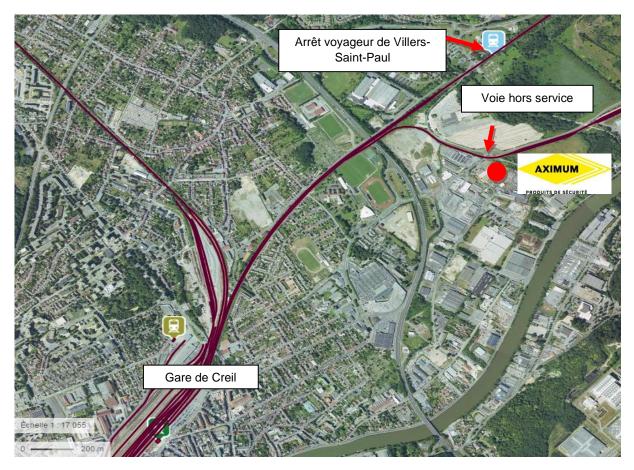


Figure 3 : Réseau Ferroviaire près du site

Source : Géoportail

Une ligne de fret allant jusqu'à l'usine de SUEZ-ESIANE passe au Nord du site (en orange sur la carte ci-après). Une ancienne voie contourne le site sur sa périphérie Nord – Nord-Est – Sud (en bleu sur la carte ci-après).

Etude de danger

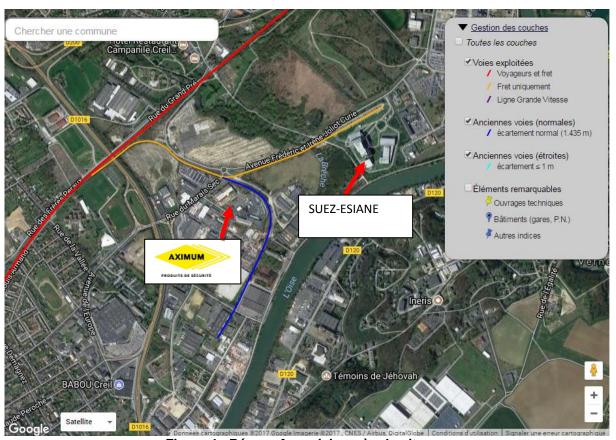


Figure 4 : Réseau ferroviaire près du site

Source: www.anciennesvoiesferrees.fr

Aximum n'est pas desservi par voie ferrée.

Etude de danger

Axes routiers

Le site est desservi par les rues du Marais Sec et du Clos Barrois.

Les axes principaux à proximité sont la D1016 qui est un axe Nord-Sud et la D200 allant vers Rieux.

L'autoroute la plus proche du site est l'A1 Paris-Lille située à une dizaine de kilomètres à l'Est du site.

Le trafic routier recensé sur les principaux axes à proximité du site AXIMUM, pour l'année 2015, est indiqué sur la figure ci-après.

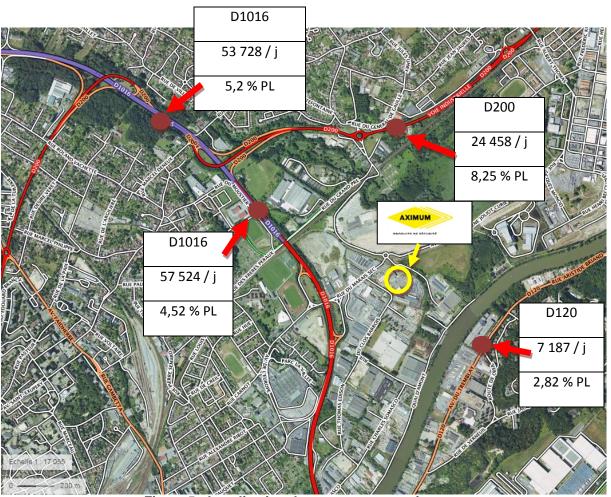


Figure 5 : Localisation des comptages routiers

Source: opendata.oise.fr

Etude de danger

Le site AXIMUM est entièrement clos sur l'ensemble de sa périphérie et dispose de 2 entrées :

- 1 entrée personnel et visiteurs rue du Marais Sec (Véhicules Légers et Poids Lourds),
- 1 entrée camions (PL) rue du Clos Barrois,
- 1 sortie camions (PL) et véhicules légers (VL) rue du Marais Sec.

Il n'y a pas de séparation physique entre les deux entités AXIMUM qui se partagent le site.

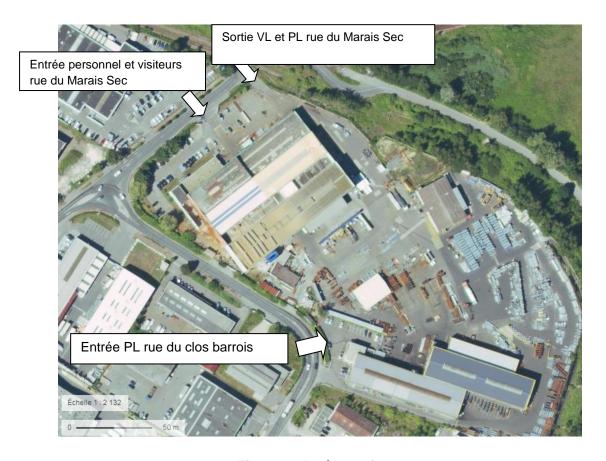


Figure 6 : Accès au site

Source : Géoportail

3.1.5. Milieu naturel

Le site AXIMUM est implanté dans un environnement industriel et est entouré d'industries et de commerces.

Ainsi la zone est relativement démunie en milieux naturels remarquables. La zone naturelle la plus proche est la ZNIEFF Coteaux de Vaux et de Laversine, située à 1 km au Sud.

Le site n'est inclus dans aucun périmètre de protection de captage destiné à l'alimentation en eau potable.

Etude de danger

3.2. SOURCES EXTERNES DE DANGERS

3.2.1. Etablissements industriels voisins

Les établissements industriels recensés à proximité sont suffisamment éloignés pour ne pas présenter de risque direct pour AXIMUM.

Les entreprises voisines les plus proches sont les suivantes :

Etablissement concerné	Activité	Distance / site	Orientation / site
Société Normande Carton Ondulé	Fabrication et transformation d'emballages en carton ondulé	145 m	Sud
Sud Oise Recyclerie Marie Françoise	Recyclerie	140 m	Sud-Est
Service Transports Agglomération Creil	Réseau de transport urbain	300 m	Sud-Est
BORFLEX Composites	Fabrication de pièces techniques à base de matières plastiques	350 m	Sud-Est

Tableau 3 : Etablissements industriels voisins

L'établissement industriel classé le plus proche est Griset, situé à 550 m au Nord-Ouest, et soumis à autorisation.

Aucun Plan de Prévention des Risques Technologiques (PPRT) n'est prescrit sur la commune de Nogent-sur-Oise.

Une demande d'information auprès de la DREAL a permis de confirmer l'absence d'effets issus d'un voisin industriel sur le site AXIMUM.

Compte tenu de l'éloignement, le risque direct lié aux sites industriels voisins ne sera pas retenu comme cause d'accident potentiel.

3.2.2. Axes de transport de matières dangereuses (TMD)

Le Dossier Départemental des Risques Majeurs de l'Oise recense les principaux axes sur lesquels transitent des matières dangereuses. Le TMD concerne essentiellement les voies routières (2/3 du trafic en tonnes kilomètre) et ferroviaires (1/3 du trafic); la voie d'eau (maritime et les réseaux des cours d'eau et canaux) et la voie aérienne participent à moins de 5% du trafic1

Sur la route, le développement des infrastructures de transports, l'augmentation de la vitesse, de la capacité de transport et du trafic multiplient les risques d'accidents. Aux conséquences habituelles des accidents de transports, peuvent venir se surajouter les effets du produit

_

¹ Dossier Départemental des Risques Majeurs du Nord

Etude de danger

transporté. Alors, l'accident de TMD combine un effet primaire, immédiatement ressenti (incendie, explosion, déversement) et des effets secondaires (propagation aérienne de vapeurs toxiques, pollutions des eaux ou des sols).

D'après le Dossier Départemental des Risques Majeurs de l'Oise, les matières dangereuses sont essentiellement transportées par voies routières (70 %) et ferroviaires (25 %).

Les principaux axes routiers, à proximité du site, empruntés pour le transport de matières dangereuses sont la RD 1016 (à 300 m à l'Ouest du site) et la RD 200 (à 650 m au Nord).

Les principaux axes de circulation ferroviaire empruntés par les TMD sont :

- Paris Nord Creil / Amiens (1,3 km à l'Ouest du site)
- Paris Nord Creil / Compiègne (450 m au Nord-Ouest du site)

La rivière Oise, qui passe à 450 m au Sud-Est du site est une voie navigable à risque.

Le site est situé rue du Marais Sec, qui n'est pas une voie de transit important.

On peut considérer le risque engendré par le trafic TMD comme négligeable par rapport aux risques internes de l'installation.

La prévention des accidents repose sur une réglementation des moyens de transport et sur l'organisation des secours. Les moyens de transport doivent respecter des contraintes strictes concernant la formation des conducteurs, la vitesse maximale autorisée, la signalisation du produit transporté et la codification de ses effets, la spécification des conteneurs et modes d'emballage utilisés. Ils doivent respecter les différents itinéraires de contournement des zones habitées. Par ailleurs, les entreprises de transport doivent obtenir un certificat d'agrément et soumettre leurs véhicules aux contrôles techniques de l'administration.

Le risque lié au transport de matières dangereuses, comme cause d'accident potentiel, ne peut être totalement occulté mais reste négligeable pour le site AXIMUM.

Etude de danger

3.2.3. Chute d'aéronefs

La probabilité estimée de chute d'avion est de 10⁻⁵ à 10⁻⁷ par an, sur un site situé à proximité d'un aéroport, soit une chute tous les 100 à 10 000 millénaires.

L'espace aérien d'un aérodrome peut être divisé en 3 zones :

- 1 zone proche dans un rayon de 5 km au-delà des pistes,
- 1 zone de vols locaux sur une distance entre 5 km et 20 km autour de l'aéroport,
- 1 zone hors aérodrome.

Les risques les plus importants se situent au moment du décollage et de l'atterrissage des aéronefs. La zone admise comme étant la plus exposée est celle qui se trouve à l'intérieur d'un rectangle délimité par :

- Une distance de 3 km de part et d'autre dans l'axe de la piste ;
- Une distance de 1 km de part et d'autre perpendiculairement à la piste.

Les dégâts causés par un tel accident sont difficiles à estimer puisqu'ils dépendraient de nombreux paramètres (taille de l'appareil, hauteur de chute, etc...).

D'une manière générale, le survol aérien des installations peut se décomposer comme suit :

- survol par l'aviation commerciale qui évolue au-dessus de 6 000 m,
- survol par l'aviation légère qui évolue entre 300 et 500 m, certains appareils pouvant descendre jusqu'à 150 m. Ce type de survol est toutefois particulièrement rare,
- survol par l'aviation militaire qui évolue entre 500 et 1 000 m. Toutefois certains vols d'entraînement peuvent amener les pilotes à descendre à 300 m (hauteur minimale).

La base aérienne 110 est située sur les communes de Verneuil-en-Halatte, Creil et Apremont. Elle est située à 2,5 km et perpendiculairement à AXIMUM. De plus la plateforme aéronautique est fermée depuis le 1er septembre 2016. Une réutilisation de la base comme aérodrome d'affaires est évoquée par la presse régionale.

Le risque lié à la chute d'un aéronef ou avion ne sera donc pas retenu comme cause d'accident potentiel, le site étant situé à plus de 2 km de l'aérodrome.

Etude de danger

3.2.4. Servitude d'Utilités Publiques

La situation du site vis-à-vis des servitudes d'utilités publiques est la suivante :

- Réseaux électriques : Aucune ligne haute tension ne traverse le site AXIMUM. La plus proche ligne à haute tension est située à 380 m à l'Ouest du site.
- Réseaux gaz : Une canalisation de gaz Haute Pression passe en bordure Sud et Ouest du site.
- Servitudes militaires: Il n'y a pas de zones militaires proches (camp, terrain d'entrainement au tir, ...) ni de zones de survol ou d'entrainement pour les avions de chasse à basse altitude.
- Servitudes aériennes : Il n'y a pas de zone de survol à basse altitude pour l'aviation civile à proximité du site.
- Plan de Prévention des Risques Inondation: Le Plan de Prévention des Risques Inondation (PPRI) de la rivière Oise, section Brenouille – Boran sur Oise, prescrit par arrêté préfectoral du 4 décembre 2014, vise 17 communes dont la commune de Nogentsur-Oise.
- Plan de Prévention des Risques Technologiques : Aucun Plan de Prévention des Risques Technologiques (PPRT) n'est prescrit sur la commune de Nogent-sur-Oise.

Aucun risque lié aux servitudes d'utilités publiques ne concerne le site AXIMUM.

3.2.5. Malveillance

Elle se traduit par des actions délibérées très diverses nuisibles à l'établissement (sabotages, destructions, abus de confiance, détournements, malversations, etc.) pouvant aller jusqu'à mettre en péril son existence.

Elle représente globalement 4% des sinistres, mais 44% des pertes. Les actes de vandalisme sont difficilement maîtrisables, mais doivent être envisagés.

Différentes mesures permettent de réduire ce risque pour le site AXIMUM :

- Pendant les phases de fonctionnement toute personne étrangère au personnel serait rapidement identifiée,
- Le site est clôturé sur toute sa périphérie
- L'accès au site s'effectue par entrées fermées et strictement réservées aux personnes autorisées munies de badges,
- Un gardien est présent sur le site lorsqu'il n'y a pas de personnel (de 3h à 6h en semaine, et le week-end),
- Un système de vidéosurveillance et d'une détection anti-intrusion pour la partie bureau, opérationnels le week-end.

Le risque lié à la malveillance est donc faible sur le site AXIMUM.

Etude de danger

3.2.6. Phénomènes naturels

Température ambiante

Les températures moyennes mensuelles relevées par la station de Creil (commune adjacente, au sud de Nogent-sur-Oise) sont présentées ci-dessous.

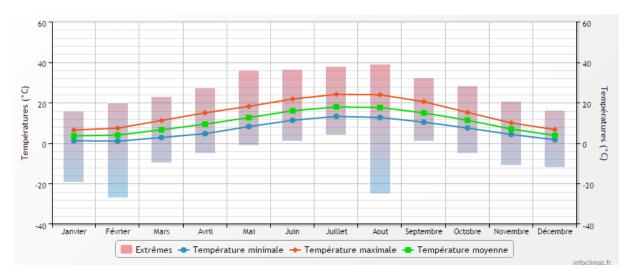


Figure 7 : Températures à Creil de 1973 à 2016

Source: infoclimat.fr

Le climat est de type océanique. Il se caractérise par la faiblesse des amplitudes thermiques et par sa douceur générale.

Les variations de température ont une faible incidence sur le fonctionnement des installations.

Précipitations/Inondations

Les précipitations moyennes mensuelles relevées par la station de Creil sont présentées cidessous.

Etude de danger

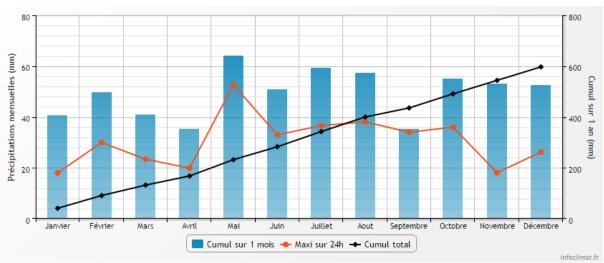


Figure 8 : Précipitations à Creil de 1973 à 2016

Source : infoclimat.fr

Les précipitations moyennes annuelles s'élèvent à 597 mm/an à la station de Creil. On observe des pics de précipitations aux mois de mai, juillet et août. Les mois de janvier, mars, avril et septembre sont les plus secs de l'année.

Le Plan de Prévention des Risques Inondation (PPRI) de la rivière Oise, section Brenouille – Boran sur Oise, prescrit par arrêté préfectoral du 4 décembre 2014, vise 17 communes dont la commune de Nogent-sur-Oise.

Le territoire inclus dans le périmètre du Plan de Prévention des Risques a été divisé en trois zones :

Zone Rouge :

Elle couvre des espaces estimés :

- Soit très vulnérables,
- Soit à préserver de l'urbanisation pour maintenir les champs d'expansion naturelle des crues.
- Zone Bleue :

Il s'agit de territoires déjà urbanisés exposés à des risques plus modérés. La submersion possible par rapport à la crue de référence est inférieure à un mètre, sauf dans le secteur Bleu Foncé.

Zone Blanche :

C'est une zone sans risque prévisible, ou pour laquelle le risque est jugé acceptable, sa probabilité d'occurrence et les dommages éventuels étant estimés négligeables.

Le site AXIMUM se trouve dans une zone bleue clair. Ainsi, les utilisations et occupations du sol sont soumises à des prescriptions spéciales dont la mise en œuvre est de nature à prévenir les risques, réduire les conséquences ou les rendre plus supportables.

AXIMUM est situé en zone inondable. Le risque d'inondation est donc retenu comme cause d'accident potentiel.

Etude de danger

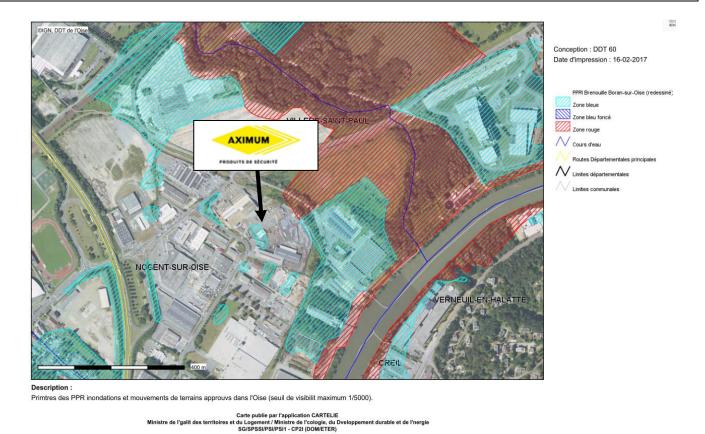


Figure 9 : Carte de zonage réglementaire PPRI de la Oise, section Brenouille – Boran sur Oise

Source : CARTELIE

Glissements de terrain

La base de données Infoterre du BRGM recense les cavités souterraines abandonnées en France métropolitaine. Il n'existe pas de cavité souterraine recensée à proximité du site AXIMUM, les premières cavités sont localisées à plus de 500 m au sud du site.

Aucun effondrement n'a été recensé à proximité du site.

La zone est classée en aléa faible pour l'aléa retrait-gonflement des argiles.

Les risques liés aux mouvements de terrains ne seront pas retenus comme cause d'accident potentiel.

Etude de danger

<u>Séismes</u>

Le zonage sismique en France est défini par l'article D563-8-1 du code de l'environnement.

La ville de Nogent-Sur-Oise est située en zone de sismicité 1 (très faible).

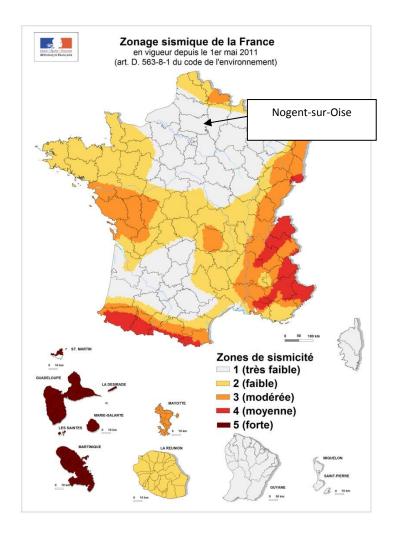
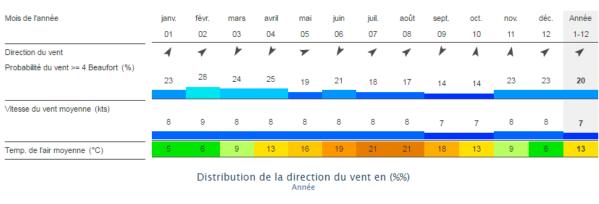


Figure 10 : Zonage sismique

Nogent-sur-Oise est dans la zone de très faible sismicité, le risque sismique ne sera donc pas retenu comme cause d'accident potentiel.

Vent


Les données pour la station de Creil, de 2009 à 2016 sont les suivantes. Les vents dominants sont en provenance du Sud-Ouest, et sont plus fréquents en période hivernale et printanière.

La vitesse et répartition du vent suivant les mois de l'année est la suivante (en kts) :

Etude de danger

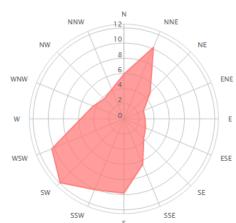


Figure 11 : Répartition du vent - Station de Creil (période 2009-2016)

Source: Windfinder

Les calculs des structures et fondations des bâtiments tiennent compte de la conséquence de vents violents.

Les installations d'AXIMUM sont protégées de ces vents forts par les bâtiments.

Par ailleurs la ville de Nogent-sur-Oise est classée en zone de vent 2 selon les règles NV65 de 2009.

Etude de danger

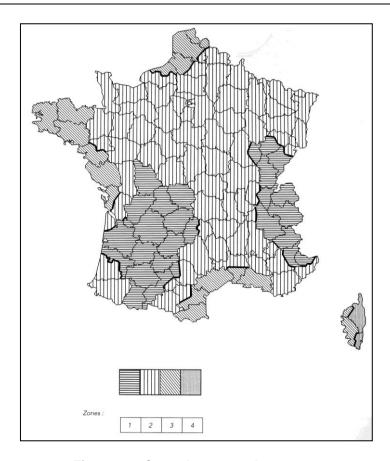


Figure 12 : Carte des zones de vent

Les risques liés aux vents ne seront pas retenus comme cause d'accident potentiel.

Neige, glace et brouillards

L'enneigement, par les surcharges qu'il apporte aux toitures et aux réservoirs, peut être la source d'un effondrement susceptible d'entraîner la rupture de tuyauteries ou de gaines fragiles, des courts-circuits par rupture des lignes électriques et l'endommagement d'équipements de production entraînant des risques d'incendie.

La région de Nogent-sur-Oise n'est pas une région à fort enneigement, de plus, les toitures des bâtiments sont prévues pour supporter cette contrainte naturelle.

La région est classée en zone de neige A1 selon les règles NV65 de 2009.

Etude de danger

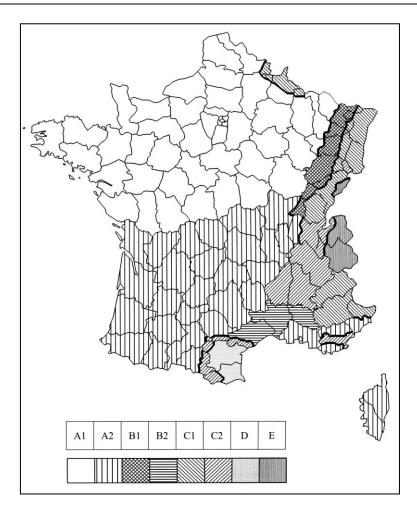


Figure 13 : Carte des zones de neige

Les risques liés à l'enneigement ne seront donc pas retenus comme cause d'accident potentiel.

Etude de danger

Foudre

L'activité orageuse a longtemps été définie par le niveau kéraunique (Nk), c'est-à-dire par «le nombre de jours par an où l'on entend gronder le tonnerre». C'était le seul indicateur de référence avant l'apparition de réseaux de détection de foudre.

Depuis la récente norme IEC 62858 transposée en NF EN 62858, le Nsg est la valeur de référence. Cette entité reproduit le plus fidèlement possible la réalité en terme de foudroiement au sol et est le résultat de travaux et d'évolutions technologiques récentes.

Le Nsg est la densité de foudroiement, c'est-à-dire la densité de points de contact qui est le nombre de points de contact par km² et par an.

Les résultats obtenus sont fournis par Météorage à partir des données du réseau de détection des impacts de foudre pour la période 2007-2016.

La densité de foudroiement de la commune de Nogent-sur-Oise est de 1,33 impacts/km²/an tandis que la valeur moyenne est de 1,12 impacts/km²/an.

Entre 2007 et 2016, il y a eu en moyenne 5 jours d'orage par an.

Cf. Rapport Météorage à Nogent-sur-Oise insérée en annexe 14

Le risque individuel et annuel de décès par la foudre est estimé à 5.10⁻⁷. Cette probabilité de risque peut être considérée comme étant négligeable.

Néanmoins, au sein d'un établissement industriel ce risque doit être pris en compte.

Dans ce cadre, AXIMUM a fait réaliser une étude de protection contre les effets de la foudre pour l'ensemble de son site. L'intervention sur site a eu lieu le 19/08/16, les résultats sont joints en annexe.

Cf. Analyse du Risque Foudre et Etude Technique insérées en annexe 15

L'étude prescrit l'installation de Paratonnerres à Dispositif d'Amorçage sur les bâtiments, et des parafoudres sur certaines installations électriques. Il convient également de s'assurer de la bonne équipotentialité des installations.

Les résultats de l'étude seront réévalués une fois le projet complètement terminé, c'est-à-dire y compris la phase démolition du hall de prétraitement actuel terminée, afin d'adapter au mieux la protection à mettre en place.

Etude de danger

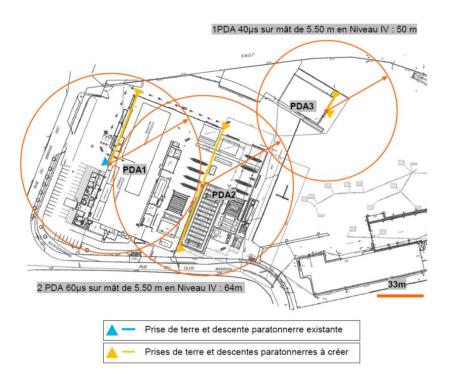


Figure 14 : Plan de protection préconisé

Les risques liés à la foudre seront retenus comme cause d'accident potentiel.

3.2.7. Traitement spécifique de certains événements initiateurs

L'annexe II de l'arrêté du 26 mai 2014 relatif à la prévention des accidents majeurs dans les installations classées mentionnées à la section 9, chapitre V, titre ler du livre V du code de l'environnement, établit une liste d'événements externes susceptibles de conduire à des accidents majeurs pouvant ne pas être pris en compte dans l'étude de dangers en l'absence de règles ou instructions spécifiques :

- Chute de météorite ;
- Séismes d'amplitude supérieure aux séismes maximums de référence éventuellement corrigés de facteurs, tels que définis par la réglementation, applicables aux installations classées considérées;
- Crues d'amplitude supérieure à la crue de référence, selon les règles en vigueur;
- Événements climatiques d'intensité supérieure aux événements historiquement connus ou prévisibles pouvant affecter l'installation, selon les règles en vigueur;
- Chute d'avion hors des zones de proximité d'aéroport ou aérodrome (plus de 2 km);
- Rupture de barrage de classe A ou B au sens de l'article R. 214-112 du code de l'environnement ou d'une digue de classe A, B ou C au sens de l'article R. 214-113 de ce même code ;
- Actes de malveillance.

Etude de danger

3.3. <u>DESCRIPTION DES INSTALLATIONS</u>

Le site AXIMUM est localisé sur la commune de Nogent-sur-Oise, sur un terrain de 29 410 m². Il est spécialisé dans la galvanisation et le thermolaquage de toutes pièces en acier ainsi que le profilage de glissière et autres accessoires de la route.

Les chiffres suivants concernent les ateliers de fabrication de glissières métalliques, de galvanisation et de thermolaquage, qui sont présents sur le site de Nogent-sur-Oise sous l'entité AXIMUM Produits de sécurité.

2 usines à Nogent-sur-Oise (60)

- 1 bureau d'étude
- 125 salariés
- 10 technico-commerciaux, 6 assistant(e)s commercial(e)s
- 1 service export

Les installations des activités de galvanisation et de thermolaquage sont les suivantes :

- Les bains de prétraitement,
- Le bain de zinc,
- La cabine de grenaillage,
- La cabine de peinture,
- L'étuve de séchage,

Les installations des activités de fabrication des glissières, poteaux et écarteurs sont les suivantes :

- Les dresseuses,
- Les presses,
- Les profileuses,
- Les poinconneuses,
- Les cisailles.

Les installations annexes sont les suivantes :

- Les installations de combustion,
- Les installations de compression,
- Le transformateur électrique,
- Les installations de chauffage,
- Les groupes froids
- Les 2 chargeurs de batterie chariot,
- Le bassin de rétention des eaux de pluies de 457 m³ côté Métallerie- Profilage
- Le bassin de rétention des eaux pluviales de 698 m³ côté Galvanisation- Thermo Laquage

Etude de danger

4. IDENTIFICATION ET CARACTERISATION DES POTENTIELS DE DANGERS

4.1. **GENERALITES**

Les principaux risques engendrés par les activités d'AXIMUM sont liés essentiellement à la nature des produits stockés et manipulés. Les risques suivants seront donc retenus :

- Le risque d'incendie lié à la présence de produits combustibles et inflammables,
- Le risque incendie/explosion lié à la présence de gaz inflammables,
- Le risque de pollution dû à la propagation dans l'eau et le sol de produits dangereux pour l'environnement.

4.1.1. Incendie

La présence sur le site de produits inflammables et/ou combustibles engendre un risque incendie. L'incendie est une combustion qui nécessite la conjugaison de trois éléments constituant le triangle du feu :

- Présence d'un combustible ou d'un liquide inflammable en quantité suffisante.
- Présence d'un comburant (oxygène de l'air).
- Présence d'une source d'énergie d'activation.

Ces 3 conditions représentent le classique « triangle du feu ».

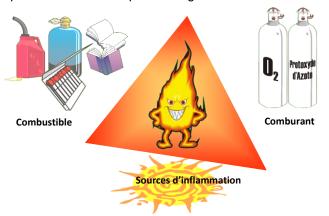


Figure 15 : Triangle du feu

4.1.2. Explosion

L'inflammation d'un mélange combustible air/vapeur ou air/gaz peut prendre une allure d'explosion. Les caractéristiques d'explosivité de ces deux premiers mélanges sont celles évoquées ci-avant avec les limites d'inflammabilité (LII et LSI).

En présence de ces mélanges, l'énergie nécessaire pour provoquer l'inflammation peut être très faible. Une étincelle suffit. On parle alors de LIE (Limite Inférieure d'Explosivité) et de LSE (Limite Supérieure d'Explosivité). Une explosion peut survenir sous plusieurs conditions :

Etude de danger

- Présence d'un gaz comburant (oxygène de l'air),
- Présence d'un produit pulvérulent combustible à l'état finement divisé,
- Présence d'une source d'inflammation,
- Présence d'un domaine défini de concentration (LIE<C<LES) comme pour un gaz inflammable,
- Présence d'un confinement suffisant,
- Présence du produit en suspension (nuage de poudre) ou en dépôt.

4.1.3. Pollutions accidentelles

Pollution accidentelle par déversement de produits

Les pollutions accidentelles potentielles sont l'épanchement d'un produit liquide qui pourrait s'infiltrer dans le sol ou rejoindre le réseau eaux pluviales suite à une fuite lors de la phase de chargement/déchargement notamment.

Les causes de déversement de produits sur le sol pourraient donc être principalement imputables à :

- Un accident impliquant un camion de livraison (mauvaise manœuvre),
- L'éclatement, la rupture d'un jerricane, fût, containeur ...,
- Un problème matériel : flexible, connecteur flexible, vanne,
- La maladresse lors d'une manipulation,
- Le non-respect des consignes,
- La malveillance.

Tous les stockages de produits liquides présents sur le site et susceptibles de créer une pollution des eaux ou des sols sont associés à des capacités de rétention suffisante à savoir :

- 100% de la capacité du plus grand réservoir ou 50% de la capacité totale des réservoirs associés
- 20% de la capacité totale des fûts pour les stockages de récipients de capacité unitaire inférieure ou égale à 250 L

Pollution accidentelle par les eaux d'extinction incendie

L'eau utilisée par les équipes d'intervention pour éteindre un incendie et pour protéger éventuellement les structures voisines menacées, s'écoule en entraînant les produits de dégradation issus de la combustion. Ces eaux d'extinction d'incendie joueraient le rôle de vecteur de dispersion et seraient susceptibles de polluer l'environnement si elles ne sont pas confinées, analysées et traitées avant rejet.

Sur le site de Nogent, on distingue deux zones distinctes de rétention des eaux d'extinction incendie, la zone dite zone « *Galvanisation* » et la zone dite zone « *Métallerie profilage* »

<u>DIMENSIONNEMENT DU BASSIN DE RETENTION DES EAUX D'EXTINCTION</u> <u>GALVANISATION</u>

Etude de danger

Le volume d'eau d'extinction à prendre en compte est calculé selon le document technique **D9 « Défense extérieure contre l'incendie » -** version septembre 2001.

Hauteur de stockage:

Hauteur de stockage sur le site inférieure à 3m : Coefficient retenu 0

Type de construction :

Le bâtiment dispose de mur en bardage, avec ossature métallique stable au feu < 30 min : Coefficient retenu + 0,1

Intervention Interne:

Le site hors heure d'ouverture dispose d'un gardiennage. Le gardien est stationné à l'entrée du site. Capteurs présents au niveau des brûleurs du four galva & contrat de télésurveillance Coefficient retenu - 0,1 & 0,1

Surface de référence :

La surface retenue concerne le bâtiment de galvanisation, soit une surface de 5476 m²

CRITERE		COEFFICIENTS ADDITIONNELS	
Hauteur de	h < 3m	0	0
stockage	h < 8m	+ 0,1	
Stockage	8m < h < 12 m	+ 0,2	
	h > 12 m	+ 0,5	
Type de		- 0,1	
construction	Ossature stable au feu ≥ 30 mn	0,1	
	Ossature stable au feu < 30 mn	+0,1	+0,1
Intervention	Types d'interventions internes		
interne	Accueil 24h/24 (présence permanente à l'entrée)	- 0,1	-0,1
	Détection Incendie généralisée 24h/24 7j/7 en télésurveillance ou au poste de secours 24h/24 lorsqu'il existe, avec des	- 0,1	-0,1
	consignes d'appels Service de sécurité incendie : 24h/24 avec moyens appropriés (équipe de 2 ^{de} intervention, en mesure d'intervenir 24h/24	-0,3	
Σ coefficients			-0,10
1 + Σ coefficier	nts		0,9
Surface de réfé	érence S		5476
Débit interméd	iaire du calcul		295
$Qi = 30 \times S \times ($			
Risque 1	Q 1 = Q i x 1	Risque 1:	
Risque 2			$Q1 = 295 \text{ m}^3$
Risque 3	Q 3 = Q i x 2		
Risque Q 1 ou Q 2 ou Q 3 / 2 Q2			0
sprinklé			
Débit requis Q	(arrondi au multiple de 30 le plus proche)		300 m ³ /h

Etude de danger

La capacité de rétention de l'ensemble des bassins est calculée selon le document technique D9A « Guide pratique pour le dimensionnement des rétentions des eaux d'extinction » - version août 2004.

Volume des eaux d'extinction à contenir

Le volume de rétention nécessaire pour contenir les eaux d'extinction d'un incendie correspond à 2h du débit d'eau d'extinction, soit un volume de 600 m³b(débit requis= 300 m³/h)

Volume d'eau lié aux intempéries

Le volume à prendre en compte est défini de façon forfaitaire en comptant 10 l/m² de surfaces susceptibles de drainer les eaux météoriques vers le bassin de rétention. La surface raccordée au bassin comprend 13305 m² de voirie et 4625 m² de toiture. Nous prendrons donc en compte la surface de 17930 m²

Le volume lié aux intempéries à prendre en compte est donc de 179,3 m³.

Présence de stockages de produits liquides

On compte 20 % du volume des liquides stockés dans le local contenant le plus grand volume qui est de 140 m³ (cuves de stockage acide), soit un volume de 28m³

D9A - Dimensionnement des rétentions des eaux d'extinction

Besoins pour la lutte extérieure	Résultat document D9 (Besoins x 2heures minimum)		=	600
				+
Moyens de lutte intérieure contre l'incendie	Sprinklers	Volume réserve intégrale de la source principale		0
	-	•	<u> </u>	+
	Rideau d'eau	Besoins x 90 min		0
		•	<u> </u>	+
	RIA	Volume négligeable pour le calcul de rétention		0
				+
	Mousse HF & MF	Débit de solution moussante x temps de noyage (en gal. 15-25 mn)		0
		•		+
	Brouillards d'eau & autres systèmes	Débit x temps de fonctionnement requis	0 m ³ /h	0
			0	
				+
Volume d'eau lié aux intempéries	10l/m² de surface de drainage 17930 m²			179,3
				+
Présence stock de liquides	20% du volume contenu dans le local contenant le plus grand volume			28
	<u> </u>			

Etude de danger

Volume de rétention du site partie galvanisation :

Le site pour la partie galvanisation dispose d'une capacité de rétention des eaux d'extinction d'incendie de **820 m**³ décomposée de la facon suivante :

- Bassin de rétention de 698 m³, -
- 43m³ au niveau des canalisations,(canalisations reliant les différentes bouches au bassin de rétention)
- 77 m³ au niveau de la voirie,

La vidange du bassin de collecte se fait par pompe de relevage, ce qui permet de confiner l'eau.

Dans le cadre d'un sinistre important, les eaux d'extinction déversées seraient confinées, en attente de leur récupération par une société spécialisée (capacité de **818 m³** pour un besoin de 807,3 m³).

<u>DIMENSIONNEMENT DES BASSINS DE RETENTION DES EAUX D'EXTINCTION PROFILAGE</u> <u>METALLERIE</u>

Le volume d'eau d'extinction à prendre en compte est calculé selon le document technique **D9 « Défense extérieure contre l'incendie » -** version septembre 2001.

Hauteur de stockage:

Hauteur de stockage sur le site inférieure à 3m : Coefficient retenu 0

Type de construction :

Le bâtiment dispose de mur en bardage, avec ossature métallique stable au feu < 30 min : Coefficient retenu + 0,1

Intervention Interne:

Le site hors heure d'ouverture dispose d'un gardiennage. Le gardien est stationné à l'entrée du site, contrat de télésurveillance Coefficient retenu - 0,1

Surface de référence :

La surface retenue concerne les deux bâtiments de profilage et de métallerie accolés, soit une surface de 2840 m²

Etude de danger

CRITERE		COEFFICIENTS	Coefficient	
		ADDITIONNELS	retenu pour	
			le calcul	
Hauteur de	h < 3m	0	0	
stockage	h < 8m	+ 0,1		
	8m < h < 12 m	+ 0,2		
	h > 12 m	+ 0,5		
Type de	Ossature stable au feu ≥ 1h	- 0,1		
construction	Ossature stable au feu ≥ 30 mn	0		
	Ossature stable au feu < 30 mn	+0,1	+0,1	
Intervention	Types d'interventions internes			
interne	Accueil 24h/24 (présence permanente à l'entrée)	- 0,1	-0,1	
	Détection Incendie généralisée 24h/24	- 0,1		
	7j/7 en télésurveillance ou au poste de			
	secours 24h/24 lorsqu'il existe, avec des			
	consignes d'appels			
	Service de sécurité incendie : 24h/24 avec	-0,3		
	moyens appropriés (équipe de			
	2 ^{de} intervention, en mesure d'intervenir			
	24h/24			
Σ coefficients			0	
1 + Σ coefficier			1	
Surface de réfé			2840	
Débit interméd			170 m ³ /h	
$Qi = 30 \times S \times ($				
Risque 1		Risque 1:		
Risque 2	$Q 2 = Q i \times 1,5$		Q1 = 170 m^3/h	
Risque 3				
Risque		0		
sprinklé	180 m³/h			
Débit requis Q (arrondi au multiple de 30 le plus proche)				

La capacité de rétention de l'ensemble des bassins est calculée selon le document technique **D9A** « **Guide pratique pour le dimensionnement des rétentions des eaux d'extinction** » - version août 2004.

Volume des eaux d'extinction à contenir

Le volume de rétention nécessaire pour contenir les eaux d'extinction d'un incendie correspond à 2h du débit d'eau d'extinction, soit un volume de 360 m³ (débit requis= 180 m³/h)

Volume d'eau lié aux intempéries

Le volume à prendre en compte est défini de façon forfaitaire en comptant 10 l/m^2 de surfaces susceptibles de drainer les eaux météoriques vers le bassin de rétention. La surface raccordée au bassin comprend 4260 m² de voirie et 2840 m² de toiture. Nous prendrons donc en compte la surface de 7100 m²

Le volume lié aux intempéries à prendre en compte est donc de 99,8 m³.

Etude de danger

Présence de stockages de produits liquides

On compte 20 % du volume des liquides stockés dans le local contenant le plus grand volume qui est de 1,6 m³ (8 bidons de 200L d'huiles), soit un volume de 0,32m³

D9A - Dimensionnement des rétentions des eaux d'extinction

		Telefilloris des eddx d'extiriction			
Besoins pour la lutte extérieure	Résultat document D9 (Besoins x 2heures minimum)				
				+	
	Sprinklers Volume réserve intégrale de la source principale		source	0	
				+	
	Rideau d'eau	Besoins x 90 min		0	
				+	
Moyens de lutte intérieure	RIA Volume négligeable pour le calcul de rétention		cul de	0	
contre l'incendie				+	
	Mousse HF & MF Débit de solution moussante x temps de noyage (en gal. 15-25 mn)		-	0	
		•		+	
	Brouillards d'eau & autres systèmes	Débit x temps de fonctionnement requis	0 m ³ /h	0	
		•		+	
Volume d'eau lié aux intempéries	10l/m² de surface de drainage 7100 m²		71		
				+	
Présence stock de liquides	20% du volume contenu dans le local contenant le plus grand volume			0,32	
				=	
Volume total de liquide à mettre en rétention 4					

Volume de rétention du site partie métallerie- profilage :

Le site dispose au niveau des bâtiments profilage- métallerie d'un bassin de rétention des eaux d'extinction de **457 m3**.

La vidange du bassin de collecte se fait par pompe de relevage, ce qui permet de confiner l'eau.

Dans le cadre d'un sinistre important, les eaux d'extinction déversées seraient confinées, en attente de leur récupération par une société spécialisée (capacité de 457 m³ pour un besoin de 431,3 m³).

Etude de danger

4.2. DANGERS LIES AUX PRODUITS ET MATIERES

Ce paragraphe a pour objet de décrire de façon générale les caractéristiques des différents produits et matières présents dans l'usine, et susceptibles de présenter des risques. Ces produits et matières ont été sélectionnés à partir de leurs quantités ou de leurs propriétés. Ceci ne préjuge pas des risques dans l'entreprise et des mesures de prévention adaptées, qui seront décrits plus loin.

Les produits et matières dont les risques sont à prendre en compte sont les suivants :

- L'acétylène,
- L'oxygène,
- Le gaz naturel,
- Le bain de flux : Chlorure de zinc à plus de 25 % + chlorure d'ammonium à 16,9 %,
- Le bain de dézingage : Chlorure de zinc à 19,3 %,
- Le bain de décapage
- Traction force plus,
- Jtech Flux,
- Le peroxyde d'hydrogène en solution,
- Alacali 20 % ammoniac,
- Acide chlorhydrique 30/36 %,
- Polytensid 55,
- Zincarev blok 107,
- Techmousse III,
- Zincarev D2 AE,
- Ecocool SPE,
- Poudre thermodurcissable.

Les mentions et pictogrammes de dangers de chacun des produits énumérés ci-dessus sont synthétisés dans le Tableau 4: Mentions et pictogrammes de dangers des produits.

4.2.1. L'acétylène

L'acétylène pur est un gaz extrêmement inflammable qui peut, en outre, exploser spontanément lorsqu'il est soumis à une forte pression (supérieure à deux atmosphères) ou à une élévation brusque de température. On le retrouve généralement dans des bouteilles sous pression, dissous dans l'acétone imprégnant une matière poreuse.

L'acétylène est présent sur le site dans 10 bouteilles de 10,4 m³. Il est utilisé pour la chauffe des pièces d'acier.

L'inflammation d'un gaz se produit lorsque celui-ci est mélangé à l'air en proportion convenable et qu'un apport d'énergie suffisant ou l'élévation de la température permet d'amorcer la réaction de combustion. Il existe deux seuils entre lesquels les mélanges gaz-air sont explosibles : Limite Inférieure ou Supérieure d'Explosivité (LIE - LSE). Sous la LIE le mélange est trop pauvre en combustible pour amorcer une réaction. Au-dessus de la LSE, c'est le comburant qui manque.

Etude de danger

Les caractéristiques de l'acétylène sont les suivantes :

Limites d'	explosivité	Température
LIE	LSE	d'auto-inflammation
2,5 % 81 %		300 °C

Tableau 4 : Caractéristiques de l'acétylène

4.2.2. L'oxygène

L'oxygène est un composant naturel de l'air atmosphérique, présent à hauteur de 21% dans la composition de l'air. Il est indispensable à la vie et est comburant par excellence. Aussi, une concentration permettant de travailler en toute sécurité doit être comprise entre 19,5 % et 23,5 % dans l'air. En dessous de 19,5 %, l'atmosphère devient dangereuse (maux de tête, nausée...) et très dangereuse en dessous de 16 à 12% (risque d'asphyxie). Au-dessus de 23,5%, la combustion est grandement favorisée.

L'oxygène est incompatible avec la graisse, les huiles et de nombreux matériaux. Il y a risque d'explosion suivie d'incendies.

La température d'ébullition de l'oxygène est de -183 °C.

L'oxygène est présent sur le site dans 10 bouteilles de 10,7 m³, et deux cadres de 18 bouteilles de 10,7 m³. Il est utilisé pour la chauffe des pièces en acier, et pour la découpe plasma au niveau de l'activité « métallerie »'

4.2.3. Le gaz naturel

Le gaz naturel est composé à environ 90% de méthane. Il n'est pas stocké sur le site, mais circule néanmoins dans des tuyauteries enterrées et aériennes. Il est utilisé pour alimenter les installations de combustion.

L'inflammation d'un gaz se produit lorsque celui-ci est mélangé à l'air en proportion convenable et qu'un apport d'énergie suffisant ou l'élévation de la température permet d'amorcer la réaction de combustion. Il existe deux seuils entre lesquels les mélanges gaz-air sont explosibles : Limite Inférieure ou Supérieure d'Explosivité (LIE - LSE). Sous la LIE le mélange est trop pauvre en combustible pour amorcer une réaction. Au-dessus de la LSE, c'est le comburant qui manque.

Les caractéristiques du gaz naturel sont les suivantes :

Limites d'explosivité		Température	
LIE LSE		d'auto-inflammation	
5,1 % 14 %		535 °C	

Tableau 5 : Caractéristiques du gaz naturel

Le gaz naturel est plus léger que l'air (densité 0,6).

Etude de danger

4.2.4. Traction force plus

Le Traction force plus est un gazole non routier (GNR) qui sert pour l'alimentation des chariots automoteurs. Il est stocké dans une cuve de 2 m³. L'approvisionnement s'effectue par camion-citerne avec une fréquence d'environ 1 fois par semaine.

Les caractéristiques du GNR sont les suivantes :

Limites d'	'explosivité	Température
LIE LSE		d'auto-inflammation
0,5 %	5 %	>230 °C

Tableau 6 : Caractéristiques du GNR

4.2.5. Le bain de flux

Le bain de flux est composé de chlorure de zinc à 20 % et de chlorure d'ammonium à 16,9 %.

Le chlorure de zinc est obtenu par action de l'acide chlorhydrique sur le zinc ou de l'oxyde de zinc, suivie d'une recristallisation.

Le chlorure d'ammonium est le sel ammoniacal de l'acide chlorhydrique. Dans la nature, il apparaît dans les régions volcaniques, se déposant sur les rochers près de cheminées de volcans. On le trouve aussi dans des mines profondes.

Industriellement, il peut être produit de différentes manières, notamment en combinant de l'ammoniac (NH₃) avec de l'acide chlorhydrique (H₃O+Cl-) dissout ou gazeux (chlorure d'hydrogène).

Le bain de flux est utilisé pour protéger les pièces contre l'oxydation, entre le décapage et l'immersion dans le bain de zinc. Il contient 77 m³ de chlorure de zinc à 20 % et de chlorure d'ammonium à 16,9 %, soit 98,2 t de solution.

Le bain de flux est totalement ininflammable.

4.2.6. Le bain de dézingage

Le bain de dézingage est composé de chlorure de zinc à 23,1 %. Il y a 2 cuves de 77 m³. Ce bain est utilisé pour décaper à l'acide une protection de zinc existante sur les ouvrages prétraités afin de les re-galvaniser.

Le chlorure de zinc est obtenu par réaction chimique lors du trempage des pièces zinguées avec l'acide chlorhydrique présent dans le bain.

Le bain de dézingage est corrosif et dangereux pour l'environnement. Il est totalement ininflammable

4.2.7. Le Bain de Décapage

Le bain de décapage est composé d'acide chlorhydrique concentré à 15 % maximum. Il y a 6 cuves de 77 m3. Ce bain est utilisé pour décaper les pièces avant le passage dans le bain de fluxage.

Le bain de décapage est totalement ininflammable et a des propriétés corrosives

Etude de danger

4.2.8. Produits additifs pour les bains

Les produits suivants sont des additifs, utilisés pour les bains de traitement et de galvanisation. L'ensemble de ces produits est stocké sur des rétentions couvertes à l'extérieur des bâtiments

Zincarev D2AE (quantité max 12 GRV de 1m3) :

Dégraissant acide, mono-composant liquide. Il permet d'obtenir une émulsion des huiles, graisses et résidus organiques.

Ces fonctions permettent de ne pas perdre les performances du bain.

Zincarev block 107 (quantité max 3 GRV de 1 m3) :

Inhibiteur, décapage et dézingage, non moussant. Il diminue l'attaque du métal sain. L'acide inhibé n'attaque que les oxydes de fer présents sur les pièces, et non le métal

Techmousse (quantité max 10 bidons de 30 L): antimousse

Ce produit stoppe la formation de mousse dans les bains de dézingage

Polytensid 55 (quantité maximale 440 Kg):

Additif de fluxage, tensio-actif

Ce produit est destiné à abaisser la tension superficielle des bains de fluxage.

Cette fonction améliore l'échange chimique, et par conséquent la qualité du fluxage. Cet additif permet ainsi de diminuer fortement la consommation en produit, les entrainements de sels excédentaires, et donc la formation de mattes et de cendres dans le bain de zinc.

Jtech flux :

Le Jtech flux est utilisé pour le flux de galvanisation. Il y a 18,2 t de ce produit sur le site.

4.2.9. Peroxyde d'hydrogène en solution

Le peroxyde d'hydrogène est un liquide incolore, miscible à l'eau en toutes proportions, soluble dans l'oxyde de diéthyle, insoluble dans l'éther de pétrole, décomposé par de nombreux solvants organiques.

Il est présent sur le site à des concentrations variant entre 35 % et 49 % en poids. Les solutions commerciales doivent être stabilisées pour éviter la décomposition catalytique du produit.

Cette substance est naturellement produite dans l'organisme. Elle est rapidement décomposée au niveau de la peau et des muqueuses en oxygène et en eau.

Le peroxyde d'hydrogène est utilisé pour la régénération du bain de flux et est stocké dans 10 GRV de 1000 L. Le stockage est positionné dans des rétentions couvertes à l'extérieur des bâtiments)

4.2.10. Acide Chlorhydrique 30/36%

L'acide chlorhydrique est une solution aqueuse incolore de chlorure d'hydrogène. L'acide chlorhydrique est un monoacide fort qui se dissocie totalement dans l'eau. Il y a 40,25 tonnes d'acide sur le site.

Il est le composé majoritaire des bains de décapage et de dézingage.

Etude de danger

Un réservoir tampon aérien sous bâtiment de 35 m3, est dédié au stockage de l'acide neuf et permet d'alimenter les différents bains. Le réservoir est alimenté par une aire de dépotage dédiée à ce seul produit

L'acide Chlorhydrique est étiqueté comme corrosif

4.2.11. Poudre thermodurcissable

AXIMUM utilise des revêtements industriels en poudre, exempts de COV y compris les formaldéhydes.

Les poudres sont conditionnées en poches plastiques de 230 kg disposées dans des cartons.

Les dangers liés à la poudre sont le risque d'explosion lorsque celle-ci est en suspension dans l'air.

Les caractéristiques de la poudre thermodurcissable sont les suivantes :

Concentration minimale	Energie minimale	Température d'auto-
d'explosion	d'explosion	inflammation en nuage
20-70 g/m ³	5-20 mJ	450-600 °C

Tableau 7 : Caractéristiques de poudre thermodurcissable

Les poudres thermodurcissables ne sont pas étiquetées.

4.2.12. Lubrifiants

AXIMUM utilise des produits de lubrifications dans le cadre de son processus de profilage. Deux produits de lubrifications présentent des phrases de risques, ECOCOOL 259ST+ et RENOFORM BSW3003. Ils sont étiquetés comme corrosif.

4.2.13. Enermix

Mélange de protection pour le soudage MAG manuel et automatique des aciers non alliés et faiblement alliés, de préférence sur des tôles de moyenne et fine épaisseur.

Il permet le soudage selon les différents régimes de transfert ainsi qu'en mode pulsé, soudage à plat ou en position. Sur fortes épaisseurs, ce mélange permet d'obtenir une fusion en pulvérisation axiale (Spray Arc), à basse intensité. Sa composition donne au joint un cordon de bel aspect avec un minimum de silicate, absent de projections évitant ainsi de coûteux travaux de finition.

C'est un gaz incolore, avec odeur légèrement piquante, non inflammable

Etude de danger

MENTION ET PICTOGRAMMES DE DANGERS

Produit	Mention de danger	Pictogrammes de danger
Zincarev D2AE	H302 : Nocif en cas d'ingestion H314 : Provoque des brûlures de la peau et des lésions oculaires graves H315 : Provoque une irritation cutanée H318 : Provoque des lésions oculaires graves H319 : Provoque une sévère irritation des yeux H335 : Peut irriter les voies respiratoires	1
Jtech Flux	H302 : Nocif en cas d'ingestion H314 : Provoque des brûlures de la peau et des lésions oculaires graves H318 : Provoque des lésions oculaires graves H400 : Très toxique pour les organismes aquatiques H410 : Très toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme H335 : Peut irriter les voies respiratoires	¥.
Techmousse III	H413 : Peut être nocif à long terme pour les organismes aquatiques	Pas de Pictogrammes
Zincarev block 107	H317 : Peut provoquer une allergie cutanée	<u>(1)</u>
Polytensid 55	H315 : Provoque une irritation cutanée H318 : Provoque des lésions oculaires graves	<u>.</u>
Acide chlorhydrique 30 / 36 %	H290 : Peut être corrosif pour les métaux H314 : Provoque des brûlures de la peau et des lésions oculaires graves H335 : Peut irriter les voies respiratoires	!

Alcali 20% ammoniac	H314 : Provoque des brûlures de la peau et des lésions oculaires graves H335 : Peut irriter les voies respiratoires H412 : Nocif pour les organismes aquatiques, entraîne des effets néfastes à long terme	T. I.
Traction force plus	H226 : Liquide et vapeurs inflammables H304 : Peut être mortel en cas d'ingestion et de pénétration dans les voies respiratoires H315 : Provoque une irritation cutanée H332 : Nocif par inhalation H373 : Risque présumé d'effets graves pour les organes à la suite d'expositions répétées ou d'une exposition prolongée H411 : Toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme	
Acétylène	H220 : Gaz extrêmement inflammable H230 : Peut exploser même en l'absence d'air H280 : Contient un gaz sous pression, peut exploser sous l'effet de la chaleur.	
Oxygène	H270 : Peut provoquer ou aggraver un incendie ; comburant. H280 : Contient un gaz sous pression, peut exploser sous l'effet de la chaleur.	
Chlorure de zinc à 23,1 % (pour bain de dézingage)	H411 : Toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme H290 : Peut être corrosif pour les métaux H314 : Provoque des brûlures de la peau et des lésions oculaires graves H335 : Peut irriter les voies respiratoires	
Chlorure de zinc à 20 % + chlorure d'ammonium à 16,9 % (pour bain de flux)	H411: Toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme H315: Provoque une irritation cutanée H318: Provoque des lésions oculaires graves H335: Peut irriter les voies respiratoires	T. S.
Peroxyde d'hydrogène en solution (35-49 %)	H302 : Nocif en cas d'ingestion H315 : Provoque une irritation cutanée H318 : Provoque des lésions oculaires graves H335 : Peut irriter les voies respiratoires	!

Ecocool 259ST+	H314 : Provoque des brûlures de la peau et des lésions oculaires graves H315 : Provoque une irritation cutanée	!
Renoclean SMC+	H314 : Provoque des brûlures de la peau et des lésions oculaires graves	
Renoform BSW3003	H314 : Provoque des brûlures de la peau et des lésions oculaires graves H315 : Provoque une irritation cutanée	
Enermix M21A	H280 : Contient un gaz sous pression, peut exploser sous l'effet de la chaleur.	\(
Bain de décapage	H315 : Provoque une irritation cutanée H318 : Provoque des lésions oculaires graves H335 : Peut irriter les voies respiratoires	
Poudre thermodurcissable	Pas de phrases de dangers	Pas de Pictogrammes
Gaz Naturel	H220 gaz extrêmement inflammable H280 : contient un gaz sous pression : peut exploser sous l'effet de la chaleur	

Tableau 8 : Mentions et pictogrammes de dangers des produits

Etude de danger

4.3. <u>INCOMPATIBILITES ENTRE LES PRODUITS</u>

Il n'existe pas de risques particuliers d'incompatibilité parmi les produits stockés par l'établissement AXIMUM. Les rétentions sont spécifiquement attribuées afin de ne pas mettre en contact des produits potentiellement incompatibles.

La matrice ci-dessous récapitule les incompatibilités entre les grandes familles de produits :

				\(T The			•	*
	0	-	-	-	1	-	-	+	-
	1	+	-	-	-	-	-	+	-
	1	-	+	0	1	-	-	-	-
(-	-	0	+	0	-	-	-	-
T P	-	-	-	0	0	0	0	0	0
	1	1	1	1	0	+	+	+	+
(ı	-	1	1	0	+	+	+	+
•	+	+	-	-	0	+	+	+	+
*	-	-	-	-	0	+	+	+	+

Tableau 9 : Matrice d'incompatibilité des produits chimiques

Compatibilité des produits :

Etude de danger

- : ne doivent pas être stockés ensemble
- o : ne peuvent être stockés ensemble que si certaines dispositions particulières sont appliquées
- + : peuvent être stockés ensemble

Il n'existe pas de risques particuliers d'incompatibilité parmi les produits sur le site Aximum.

4.4. APPRECIATION DES DANGERS LIES AUX ACTIVITES

4.4.1. Risques liés aux bains de prétraitement et de galvanisation

Les bains de prétraitement servent pour les fonctions suivantes :

- Dégraissage : bain chauffé entre 20°C et 30°C,
- Décapage chlorhydrique,
- Dézingage chlorhydrique,
- Rinçage,
- Fluxage : bain chauffé entre 35°C et 55°C.

La galvanisation consiste à plonger les pièces dans un bain de zinc en fusion à 450 C afin de former le revêtement.

Les principaux dangers liés à l'activité de traitement de surface sont les suivants :

- Epandage de produit par détérioration d'une cuve,
- Pollution par un produit dangereux pour l'environnement,
- Brûlures liées aux bains chauffés,
- Emanation des vapeurs acides,

L'installation CleanSteel confine les vapeurs acides au moyen d'une tour de lavage. La sécurité des travailleurs est assurée grâce à une automatisation des immersions des pièces dans les bains et d'une passerelle d'inspection autour des cuves.

Etude de danger

4.4.2. Risques liés au thermolaquage

L'activité de thermolaquage contient les installations suivantes :

 Cabine de grenaillage : permet le décapage de pièces en acier galvanisé par projection de poudre de corindon.

Les poussières des corindons et des aciers utilisés ne sont a priori pas explosives d'après la bibliographie. Toutefois en l'absence de test d'explosivité spécifiques aux matières utilisées par AXIMUM, le rapport ATEX a classé la cabine en zone ATEX par précaution, en cas de défaut de fonctionnement du système de ventilation.

 Cabine de poudrage : permet l'application manuelle de poudre avec présence d'opérateur à l'intérieur de la cabine.

Le principal risque associé à la cabine de poudrage est une explosion des matières en suspension. Cependant, l'application de poudre n'est possible que si la ventilation fonctionne, garantissant ainsi une concentration en poussières à l'intérieur de la cabine inférieure à la LIE.

Etuve de séchage

Aucun risque n'est associé à l'étuve de séchage. En effet les peintures en poudre utilisées n'émettent pas de COV (ou à l'état de traces en cas d'impuretés dans les matières premières).

4.4.3. Risques liés à la partie fabrication

Les opérations de fabrications consistent à la réalisation de glissières, poteaux et écarteurs.

Afin de réaliser ces produits, Aximum utilise un ensemble de machines-outils en fonction des éléments à fabriquer, notamment des dresseuses, des presses, des poinçonneuses, des cisailleuses et des profileuses.

L'installation contient également des radiants pour le chauffage des locaux, 3 compresseurs et un transformateur électrique.

Les principaux risques associés à ces installations sont le déversement accidentel d'huile et le risque d'incendie lié à une surchauffe ou une anomalie électrique. A noter, les stockages sont sur rétention, la présence d'un opérateur lorsque les installations fonctionnent, des absorbants à disposition et d'un système d'obturation du réseau d'eaux pluviales.

4.4.4. Risques liés aux installations de combustion

Le site est équipé de 2 fours :

- 1 four de 2 258 kW pour le bain de zinc, alimenté au gaz,
- 1 four de 430 kW pour la cuisson des pièces, alimenté au gaz.

Etude de danger

Le site est équipé de 1 chaudière de 265 kW, alimentée au gaz, pour le bain d'acide. Cette chaudière sera mise à l'arrêt au démarrage de la nouvelle installation de galvanisation.

Le projet CleanSteel prévoit l'ajout de 1 chaudière pour l'eau chaude (sanitaires) et pour le chauffage du bain d'acide (en remplacement de la chaudière existante), d'une puissance totale de 650 kW.

Le site sera donc équipé des installations suivantes :

- 1 four de 2 258 kW pour le bain de zinc, alimenté au gaz,
- 1 four de 430 kW pour la cuisson des pièces, alimenté au gaz en citerne,
- 1 chaudière eau chaude et bain d'acide de 650 kW.

Le four de cuisson des pièces était alimenté au propane, stocké dans 2 cuves situées derrière l'atelier de thermolaquage. Le four sera désormais alimenté au gaz naturel.

Les risques classiques de ces installations de combustion se caractérisent par :

- 1 fuite accidentelle de gaz naturel,
- 1 combustion non maîtrisée,
- 1 anomalie d'alimentation en eau pour les chaudières,
- 1 dysfonctionnement du système de commande.

Ces différents problèmes peuvent se traduire par l'incendie ou l'explosion de ces installations.

L'évaluation de la conformité aux installations de combustion ne met pas en évidence de nonconformité de l'installation

Cf . Annexe 7 analyse de conformité de la Rubrique 2910

4.4.5. Risques liés aux installations de compression d'air

Le site est équipé de 2 compresseurs d'air comprimé alimentés en électricité :

- 1 compresseur pour le filtre à zinc de 20 kW,
- 1 compresseur pour le thermolaquage de 50 kW.

Le projet CleanSteel prévoit l'ajout de 1 compresseur de 55 kW.

Le danger essentiel présenté par ce type d'activité est caractérisé par les risques d'incendie et d'explosion. Le combustible est généralement constitué par des brouillards ou des vapeurs d'huile ou des résidus de lubrifiants oxydés.

Pour provoquer une inflammation, il suffit qu'un point d'ignition se trouve à proximité. L'accumulation d'électricité statique, par exemple, se produit au niveau des éléments du

Etude de danger

compresseur isolé électriquement (filtres, tuyauteries, ...). Les étincelles de décharge peuvent avoir une énergie suffisante pour provoquer l'inflammation des brouillards ou vapeurs d'huile.

La marche à vide des compresseurs peut entraîner une montée rapide de température.

Les équipements de refroidissement sont des éléments importants de par leur fonction (la température d'inflammation de l'huile étant de l'ordre de 140 °C).

4.4.6. Risques liés aux installations de charge d'accumulateur

Les opérations de charge sont effectuées dans plusieurs secteurs de l'établissement.

Le site est équipé des installations de charge suivante :

• 2 chargeurs de 7,7 kW, Soit une puissance totale de 15,4 kW.

En fin de charge, les batteries plomb ouvertes sont susceptibles de dégager de l'hydrogène, ce qui engendre un risque d'explosion. L'hydrogène est un gaz pouvant former un mélange explosif avec l'air (limite inférieure d'explosivité en volume : 4 %).

Les caractéristiques d'inflammabilité de l'hydrogène sont rappelées ci-dessous :

Limites d	'explosivité	Température
LIE	LSE	d'auto-inflammation
4 %	72 %	400 °C

Tableau 10 : Caractéristiques d'inflammabilité de l'hydrogène

4.4.7. Risques liés à la circulation interne

En général, la gravité d'un accident de la circulation varie avec l'intensité de l'impact qui est luimême fonction de la vitesse du mobile et de sa masse. Dans le cas des activités d'AXIMUM, les accidents ci-dessous provenant de la circulation d'engins à moteur peuvent être la cause :

- D'un épandage de produit par détérioration d'un emballage ou d'une cuve,
- D'une pollution par un produit dangereux pour l'environnement,
- D'un incendie par inflammation d'un matériau ou produit combustible.

Circulation des véhicules routiers

La circulation des véhicules routiers est réglementée dans l'enceinte de l'établissement. Pour ce faire, il a été mis en place :

Etude de danger

- Des emplacements de stationnement autorisés,
- Une limitation de vitesse pour réduire la gravité des éventuels accidents,
- La vérification de conformité ADR des équipages transportant des marchandises dangereuses.

Camions en stationnement

Un échauffement mécanique, un acte de malveillance, peut être à l'origine d'un incendie touchant un camion et son chargement.

Au niveau des quais principaux, un incendie pourrait dans cette hypothèse se propager de camions en camions, voire à la zone de réception /expédition,

Les voies de circulation permettraient un dégagement aisé pour le poids lourd et une évacuation rapide du véhicule en cas d'incident.

Par ailleurs un camion ne peut pas rester stationné sur le site pendant la nuit.

Circulation des engins de manutention

Conformément à la législation du travail, le personnel conduisant ces matériels reçoit une formation spécifique à leur conduite (CACES), ainsi qu'une autorisation de conduite délivrée au conducteur de l'engin par son employeur.

Etude de danger

4.5. SOURCES D'ACCIDENTS

4.5.1. Généralités sur les dangers d'incendie et d'explosion

Les sources d'énergie susceptibles de créer une explosion ou un incendie sont :

Les flammes et les feux nus provenant :

- D'équipements à flamme directe,
- D'une opération de réparation ou de maintenance à l'aide de matériels, de soudure,
- D'un feu extérieur.

Les étincelles provenant :

- D'une installation électrique (surcharge, court-circuit, inadaptation du matériel),
- D'une opération de réparation ou de maintenance (meulage),
- D'un choc mécanique,
- D'une décharge d'électricité statique (ou électrostatique).

La foudre:

- L'impact de la foudre (direct ou indirect) peut initier une inflammation d'un mélange inflammable,
- Étincelles au voisinage du coup de foudre ou surtension au niveau d'appareillages électriques.

Les échauffements provenant :

- D'une installation électrique par effet Joule,
- D'une pièce métallique par frottement,
- D'un dispositif de chauffage.

Les causes volontaires :

- La malveillance,
- Le non-respect de l'interdiction de fumer.

Les autres causes :

- Le passage d'un véhicule dans une nappe inflammable,
- Une mauvaise manœuvre d'un camion,
- Le dysfonctionnement d'un organe de sécurité.

Des mesures spécifiques à ces différents risques sont en place sur le site AXIMUM. Ces procédures sont appliquées et connues de tout le personnel pour limiter les sources d'énergie susceptibles de créer une explosion ou un incendie.

Etude de danger

4.5.2. Electricité statique

L'électricité statique est un phénomène secondaire du processus industriel (opération de production ou de manutention) souvent très complexe compte tenu du nombre important de paramètres intervenant dans sa formation. On peut résumer par le schéma ci-dessous le risque « électricité statique ».

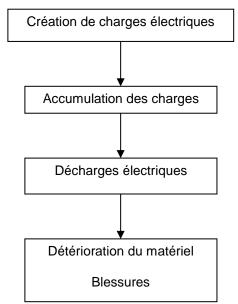


Figure 16 : Risque électricité statique

4.5.3. Electrisation du corps humain

La charge électrostatique des personnes est un phénomène courant dont la formation provient de :

- Déplacement sur le sol de personnes portant des chaussures à semelles isolantes,
- Frottement des vêtements entre eux ou sur le corps,
- Induction lors de manipulation de matières chargées d'électricité statique.

Les quantités d'électricité qui peuvent ainsi s'accumuler sont largement suffisantes pour donner lieu à une décharge disruptive au contact d'une masse métallique. La secousse ressentie est désagréable, mais inoffensive pour l'opérateur et restera sans conséquence si elle ne provoque sur celui-ci aucun geste malencontreux et si l'opérateur est hors zone ATEX.

4.5.4. Foudre

Le courant de foudre est un courant électrique qui entraîne les mêmes effets que tout courant circulant dans un conducteur électrique ou que tout courant traversant un mauvais conducteur ou un corps isolant. Par conséquent, on peut s'attendre aux effets suivants qui auront une incidence sur les installations :

Etude de danger

- Effets thermiques liés à l'effet Joule dans les mauvais conducteurs (exemple : éclatement du bois ou du béton par vaporisation de l'eau incluse, fusion de conducteurs de faible section ou de tôles de faible épaisseur, etc.)
- Effets dus aux amorçages dus aux montées en potentiel qui se traduisent par :
 - Des amorçages avec les objets métalliques voisins non reliés directement à ce circuit, d'où risque d'inflammation,
 - Des destructions d'équipements électriques ou électroniques qui seraient incorrectement reliés à la terre, d'où risque d'inflammation ou de dysfonctionnement de procédé pouvant induire un accident.
- Effets d'induction qui peuvent apparaître dans les conducteurs parallèles à ceux écoulant le courant de foudre. Ces courants vont générer eux-mêmes des montées en potentiel entraînant le même type de risque que ci-dessus.

Une étude foudre a été réalisée en aout 2016.

Cf. Analyse du Risque Foudre insérée en annexe 15

4.5.5. Courants vagabonds

Les courants électriques vagabonds qui circulent entre les systèmes électriquement conducteurs ou des parties de ces systèmes, peuvent former des arcs électriques ou des points de surchauffe générateurs d'incendie ou d'explosion :

- Sous forme de courants de retour dans des installations de génération de puissance (trains électriques, installations de soudure),
- En raison de court-circuit ou de mise accidentelle à la terre à la suite de défauts dans les installations électriques,
- Par suite d'induction magnétique (câble électrique de puissance sur chemin de câble...),
- Par la foudre.

4.5.6. Points chauds

La présence de points chauds sur le site peut résulter de la présence de :

- Fumeurs. Le risque est lié d'une part à l'état de propreté et d'autre part au contrôle de l'application des consignes d'interdiction de fumer hors emplacement dédié.
- Les étincelles d'origine mécanique pendant les travaux de maintenance (meulage, travaux au lapidaire, soudure, etc.) ou en cas de friction de pièces entre-elles.
- Les étincelles et échauffements anormaux liés aux matériels électriques (courtscircuits, etc.) existent aux postes de transformation, dans tous les réseaux électriques, au niveau des armoires électriques, des tableaux de commande et des moteurs.
- Les étincelles de courant de rupture.

4.5.7. Facteur humain

Etude de danger

L'analyse des statistiques montre que de nombreux accidents présentant des dangers, notamment pour l'environnement (perte de confinement, incendie, explosion) sont attribuables aux conditions d'opération avec implication de la fiabilité humaine des opérateurs. Le personnel est formé de manière adéquate pour connaître les risques liés à l'exploitation du site. Les descriptions de postes définissent pour les fonctions clés ; les tâches en matière de sécurité, notamment en ce qui concerne les responsabilités de leurs organisations, la formation du personnel et le respect des normes de sécurité. Les sous-traitants intervenants sur le site sont formés aux risques spécifiques du site et utilisent les documents d'autorisation ou de suivi adéquats (permis de travail, plan de prévention...).

4.5.8. Zones à risque d'explosion

Une zone dangereuse est une portion de l'espace dans laquelle peut exister un risque d'explosion dû à la probabilité de présence d'une atmosphère explosive pouvant se constituer par mélange avec l'air atmosphérique d'une substance combustible (gaz, vapeurs ou poussières) en quantité et proportion convenable. AXIMUM a réalisé l'identification et la définition des zones à atmosphères explosives sur son site. Des mesures spécifiques à ces différents risques sont en place sur le site. Ces procédures sont appliquées et connues de tout le personnel pour limiter les sources d'énergie susceptibles de créer une explosion ou un incendie.

4.5.9. Défaillance des utilités

Les risques découlant d'une défaillance des utilités concourant à un fonctionnement du système, sont analysés avec l'installation utilisant ces utilités.

Système / Activité	Sous-système	Perte d'utilité	Risque	Moyen de prévention
Traitement de surface	Chaudière bains	eau	1	Circuit fermé, Sécurité pression
Traitement de surface	Chaudière bains	gaz	1	/
Traitement de surface	Cuves	eau	/	/
Traitement de surface	Monorail	électricité	Débordement de bain (réaction liée à la trempe des pièce) On ne peut pas remonter les pièces	Rétention
Traitement de surface	Machine d'accroche	air comprimé	Décrochage de pièce	Circuit d'air comprimé équipé de clapet anti- retour
Traitement de surface	Machine d'accroche	électricité	1	Sécurité électrique

Système / Activité	Sous-système	Perte d'utilité	Risque	Moyen de prévention
Traitement de surface	Laveur de gaz	eau	Rejet des vapeurs acides	Arrêt de la ligne de production si plus d'eau
Traitement de surface	Laveur de gaz (aspiration)	électricité	Création ATEX (hydrogène dézingage)	Trappe de "secours"
Traitement de surface	Station de régénération Flux	électricité	Fuite au niveau de la station	Rétention totale
Galvanisation	Brûleurs du four de zinc	gaz	1	1
Galvanisation	Filtre zinc	air comprimé	Refoulement des poussières dans l'atelier (plus de décolmatage du filtre)	Alarme visuelle
Galvanisation	Hotte bain de zinc (porte)	air comprimé	/	Alarme visuelle
Galvanisation	Hotte bain de zinc	électricité	1	1
Galvanisation	Pont de levage	électricité	Chute de pièces	Frein par manque de courant
Thermolaquage	Corindonnage	air comprimé	1	1
Thermolaquage	Aspiration Corindonnage	électricité	1	1
Thermolaquage	Aspiration Cabine Peinture	électricité	Création ATEX (concentration peinture poussière)	Matériel électrique compatible avec la zone ATEX Balisage zone Arrêt de la cabine
Thermolaquage	Cabine peinture	air comprimé	/	/
Métallerie/profilage	radian	gaz	1	/

Etude de danger

Système / Activité	Sous-système	Perte d'utilité	Risque	Moyen de prévention
Métallerie/profilage	tout	électricité	/	/
Métallerie/profilage	tout	Air comprimé	/	/
Thermolaquage	Four de cuisson	gaz	/	/
Thermolaquage	Four de cuisson	électricité	/	/
Partie fabrication	Pont de levage	électricité	Chute de pièces	Frein par manque de courant
Partie fabrication	Aspiration	électricité	/	/
Partie fabrication	tout	Air comprimé	/	/

Tableau 11 : Défaillance des utilités

4.6. CARTOGRAPHIE DES POTENTIELS DE DANGER ET DES CIBLES

Les cartes ci-après localisent les cibles et les potentiels de dangers.

4.6.1. Localisation des cibles

Inventaire activités proches Aximum produit de marquage				
Numéros	Activité			
1	Garage- Concession automobile			
2	Bâtiment Désaffecté			
3	Magasin de Matériel Electronique			
4	Grossiste Sanitaire - Chauffage			
5	Tuyauterie, chaudronnerie, serrurerie			
6	Centre de contrôle technique + Restaurant			
7	Maintenance hydraulique technique			
8	PUM plastiques			
9	Usine de fabrication de carton			
10	Magasin de matériaux			
11	Drive Auchan			
12	Magasin de sanitaire			
13	Recyclerie			
14	Dépôt de bus agglomération de Creil			
15	Usines de Composites plastique			
16	Couvreur			
17	Friche industrielle			

18	Plate- forme de compostage
19	Magasin de produits Métallurgiques
20	Service dépannage voiture
21	Menuiserie
22	Aximum Atelier de profilage- métallerie
23	Aximum Atelier de thermo laquage
24	Complexe sportif Georges Lenne
25	Centre nautique
26	EHPAD

Tableau 12: Inventaire des activités proches d'Aximum

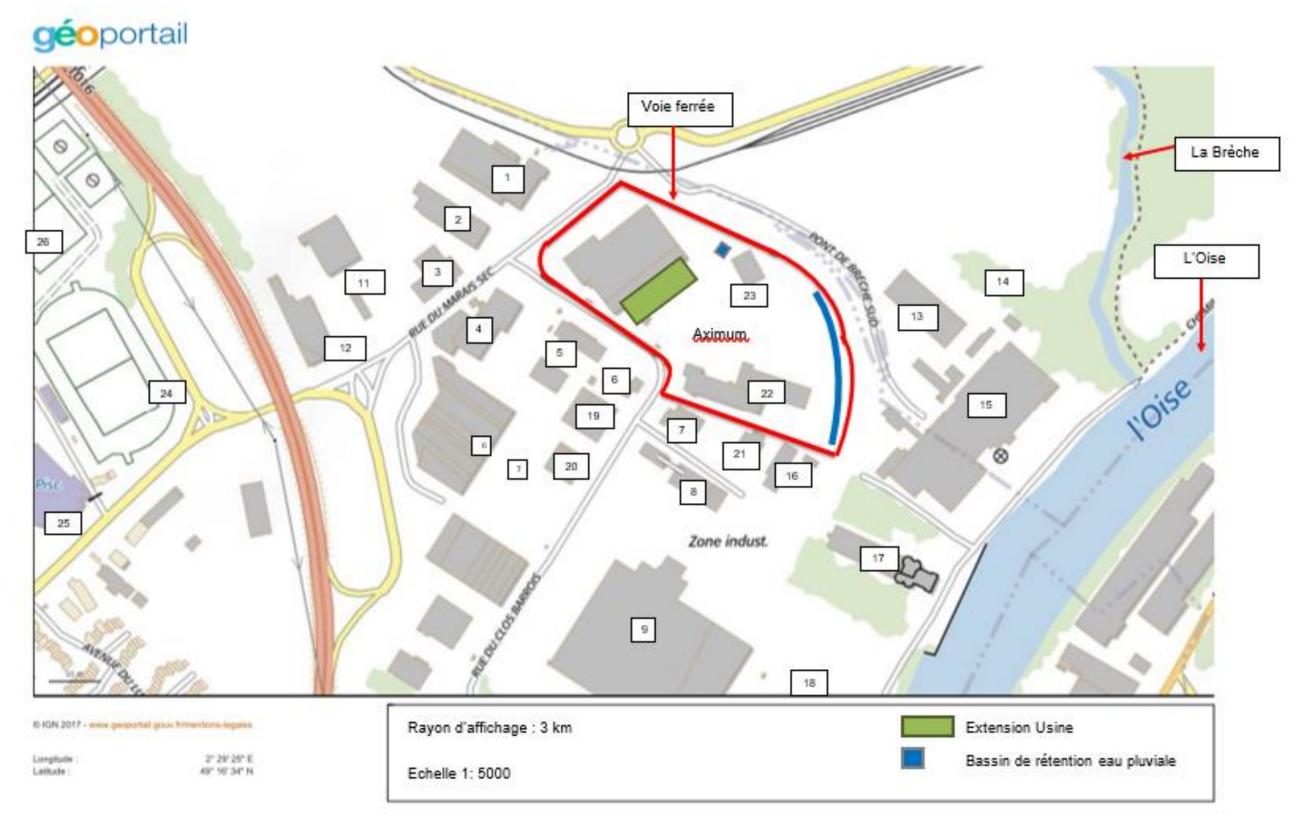


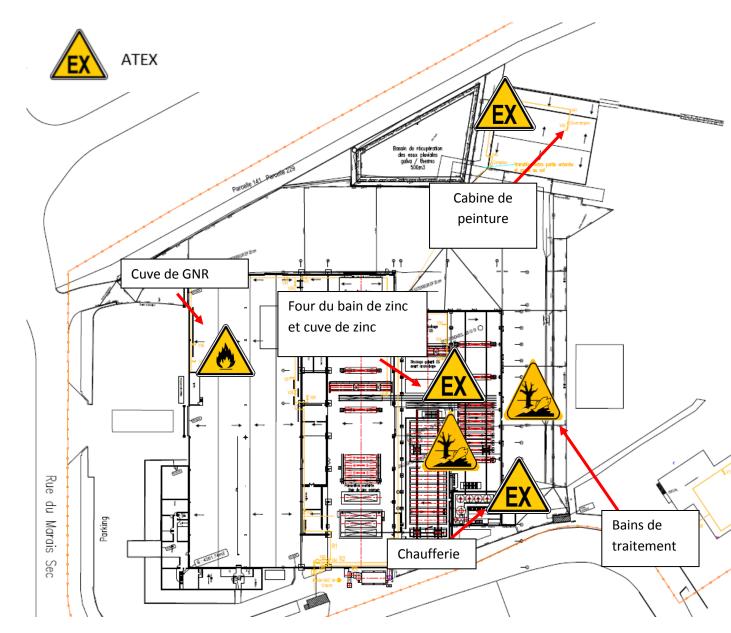
Figure 17:Localisation des cibles

AXIMUM PRODUITS DE SÉCURITÉ

Complément au dossier de Régularisation de Demande d'Autorisation d'Exploiter

Etude de Danger

4.6.2. Localisation des potentiels de dangers


Légende :

Inflammable

Dangereux pour l'environnement

Etude de Danger

Figure 18: Localisation des potentiels de danger

4.7. REDUCTION DES POTENTIELS DE DANGER

La réduction des potentiels de dangers consiste en un examen technico-économique visant entre autres à :

- Supprimer ou substituer aux procédés et aux produits dangereux, à l'origine de ces dangers potentiels, des procédés ou produits présentant des risques moindres ;
- Réduire autant qu'il est possible les quantités de matière en cause,

Il s'agit de justifier les choix de conception, le choix des produits et les choix du procédé afin de démontrer que le choix s'est porté sur une installation dont les risques ont été minimisés au maximum en restant dans des domaines économiquement réalisables.

Il faut justifier par exemple, la taille des équipements, le choix des produits alors qu'ils sont à risque ou encore le choix du procédé.

A défaut d'étude technico-économique, on peut appliquer les 4 principes de sécurité intrinsèque suivants :

- Principe de substitution : substituer les produits dangereux utilisés par des produits aux propriétés identiques mais moins dangereux,
- Principe d'intensification : intensifier l'exploitation en minimisant les quantités de substances dangereuses mises en œuvre ou stockées,
- Principe d'atténuation : définir des conditions opératoires ou de stockage, moins dangereuses,
- Limitation des effets : concevoir ou modifier les installations de telle façon à réduire les impacts d'une éventuelle perte de confinement ou d'un évènement accidentel.

4.7.1. Principe de substitution

Le Principe de Substitution peut se définir simplement comme, le remplacement des substances dangereuses par d'autres de dangerosité inférieure ou de préférence sans caractère dangereux lorsque de telles alternatives existent.

 Remplacement deuxième semestre 2017 du gaz en citerne (propane) par du gaz naturel pour l'alimentation du four de cuissons des pièces

4.7.2. Principe d'intensification

L'objectif principal est de parvenir à un meilleur rendement de l'activité afin de permettre à la fois une meilleure valorisation des ressources naturelles et une réduction des quantités de substances dangereuses mises en œuvre ou stockées.

 Le projet CleanSteel prévoit le confinement des vapeurs acides, qui seront traitées et redistribuées dans les bains d'acide diminuant ainsi la consommation d'acide

Etude de Danger

4.7.3. Principe d'atténuation

L'objectif est de définir des conditions opératoires et de stockage réduisant les risques.

- Respect des incompatibilités entre les produits,
- La formation du personnel permet, lors de déversements, une intervention rapide et efficace qui limite le volume de déversé.

4.7.4. Limitation des effets

L'objectif est de concevoir ou de modifier les installations pour réduire les impacts d'un éventuel incendie ou déversement. Pour en réduire les effets, des protections existent :

 Dimensionnement du bassin de rétention permettant de confiner tout déversement y compris les eaux d'extinction incendie (voir 4.1.3.).

4.8. ENSEIGNEMENTS TIRES DU RETOUR D'EXPERIENCE

Une des sources primordiales de données pour l'analyse des risques est le retour d'expérience suite à des accidents. Une revue des rapports d'accident sur des installations similaires a donc été effectuée dans le but de déterminer les aspects principaux qui pourraient être intégrés dans la démarche d'analyse de risques.

4.8.1. Etude accidentologique

Cette analyse accidentologique a été menée d'après les renseignements fournis par le BARPI à partir de la base de données ARIA.

Accidents survenus sur des sites de « Traitement et revêtement des métaux »

AXIMUM est classé sous le code NAF 25.61 Z « Traitement et revêtement des métaux.

Sur la base de données ARIA, 139 accidents sont recensés sous le code C25.61 – Traitement et revêtement des métaux et 21 accident sous le code C25.11 - Structures métalliques et de parties de structures, survenus entre janvier 2007 et novembre 2017.

On constate que les accidents entraînent majoritairement des incendies et des rejets de matières dangereuses et polluantes (en grande partie due à l'incendie).

Phénomènes dangereux	Nombre	Fréquence
Explosion	5	4%
Incendie	90	65%
Rejet	41	29%
Autre phénomène	3	2%

Tableau 13 : " Traitement et revêtement des métaux " - nature des accidents

Etude de Danger

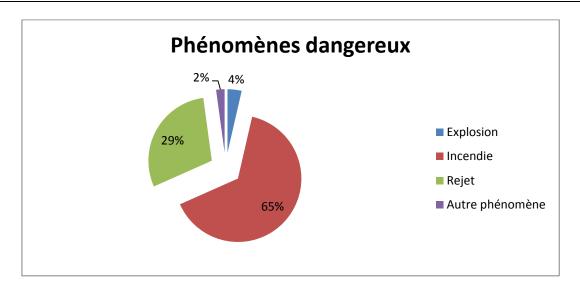


Figure 19 : "Traitement et revêtement des métaux " – phénomènes dangereux On constate que le défaut matériel est en cause dans la majorité cas.

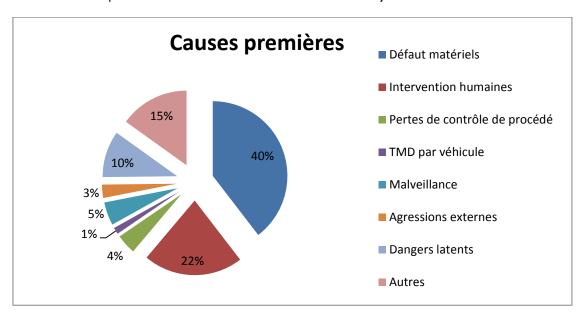


Figure 20 : " Traitement et revêtement des métaux " - causes premières

Accidents survenus sur des sites de « Structures métalliques et de parties de structures »

AXIMUM est classé aussi sous le code NAF 25.11 NAF 25.11 pour la partie fabrication.

Sur la base de données ARIA, on dénombre 21 accidents sous le code C25.11., survenus entre janvier 2007 et novembre 2017.

Etude de Danger

On constate également que les accidents entraînent majoritairement des incendies et des rejets de matières dangereuses et polluantes.

Phénomènes dangereux	Nombre	Fréquence
Explosion	0	0%
Incendie	12	57%
Rejet	9	43%
Autre phénomène	0	0%

Tableau 14 : " Structures métalliques et de parties de structures " - nature des accidents

Figure 21 : " Structures métalliques et de parties de structures " – phénomènes dangereux

On constate également que le défaut matériel est en cause dans la majorité cas.

Etude de Danger

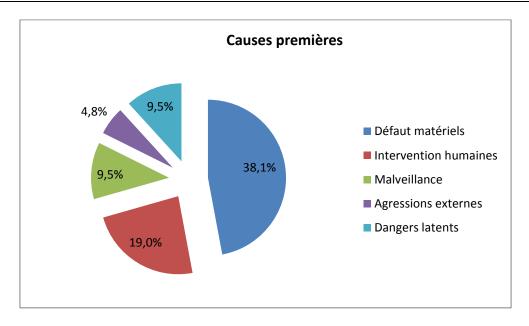


Figure 22 : " Structures métalliques et de parties de structures " – causes premières

Accidents survenus comparables à la situation d'AXIMUM

Dans le tableau ci-après sont présentés des accidents survenus dont les activités et/ou équipements sont assimilables à ceux d'AXIMUM.

Désignation de l'accident	Type d'accident	Cause	Conséquence	Amélioration apportées Mesures de prévention AXIMUM
N°13338				Cuve sur rétention
10/08/1998	Fuite d'une cuve de chlorure de zinc ammoniacal qui s'est écoulé dans le réseau pluvial.	Dans une entreprise de galvanisation fermée pour congés annuels, un ouvrier d'entretien réparant une fuite laisse le contenu	Le ruisseau récepteur est pollué et des poissons sont tués. Le réseau d'évacuation de l'établissement est inspecté.	Bassin de confinement du site
SAINT-SULPICE			·	Gardiennage du site hors activité
N° 18365				Permis feu
27/07/2000	un feu se déclare dans une unité de peinture lors de travaux de découpe de	Trois semaines après un incendie ayant endommagé une installation de galvanisation et de peinture industrielle, un feu se déclare dans	Incendie	Extincteurs
CONTRISSON	l'installation.	une unité de peinture lors de travaux de découpe de l'installation.		
N° 26458		·		Permis feu
29/12/2003	Dans une usine de traitement des métaux (galvanisation), un feu se déclare dans un local de 150 m² lors de découpage de tôles durant des travaux de maintenance.	Un ouvrier est brûlé au 3ème degré	Une protection insuffisante est à l'origine du sinistre	Panneau de protection
PLAN-D'ORGON				

Désignation de l'accident	Type d'accident	Cause	Conséquence	Amélioration apportées Mesures de prévention AXIMUM
N° 35516	Dans une entreprise de galvanisation, une canalisation de gaz naturel moyenne pression est endommagée par un engin de travaux publics durant des travaux;	10 employés de 2 entreprises mitoyennes sont évacués. Les services techniques du gaz colmatent la fuite.	Emanation de gaz naturel	Canalisation de gaz aérienne (à 4-5m de hauteur) dans le bâtiment
05/11/2008				Plan de prévention- permis de feu
CUSTINES				
N° 37044				Gardiennage locaux
20/09/2009 MONTHERME	Un feu se déclare durant la nuit de samedi à dimanche dans une entreprise de galvanisation à chaud et de traitement de surface des métaux. Un employé effectuant une ronde de surveillance découvre l'incendie au matin et alerte les secours.	Inconnue	Aucune pollution n'est signalée. Une partie des locaux abritant le traitement des effluents et 250 m² de toiture sont détruits ; les 9 employés sont en chômage technique.	Extincteurs
N° 37718				Vérification électrique annuelle Extincteurs
05/01/2010 LOUVROIL	Un feu se déclare vers 23 h entre le 8ème et 10ème des 12 étages d'un bâtiment métallique de 50 m de haut abritant l'unité de galvanisation et de peinture d'une usine métallurgique. Le personnel déclenche les extincteurs automatiques avant d'évacuer les locaux.	Une défaillance électrique au niveau des installations, qui était à l'arrêt au moment de l'accident, pourrait être à l'origine du sinistre.	Aucun blessé n'est à déplorer mais une centaine des 500 employés de l'établissement sont en chômage partiel durant la quinzaine de jours nécessaire aux réparations.	Maintenance préventive machine

Désignation de l'accident	Type d'accident	Cause	Conséquence	Amélioration apportées Mesures de prévention AXIMUM
N°48579	Incendie en sortie du four de la chaine	Une pièce, hors norme de 10,30 m est thermolaquée puis introduite dans le four qui ne mesure que 10,20 m de longueur. L'opérateur laisse la porte du four ouverte et le met en marche. Aucune surveillance n'est assurée	-Une partie de la chaine de thermolaquage est détruite,	-Rappel des règles de bon fonctionnement de l'atelier au personnel
12/09/2016	de thermolaquage, au niveau de la zone de séchage, refroidissement des pièces		-Endommagement de plusieurs machines, installations électriques, stockage de peinture,	- Rajout d'un système asservissement du fonctionnement du brûleur à la fermeture des portes
Toulouse (31)			-7 personnes en chômage technique,	
			-Les eaux d'extinction incendie ne sont pas retenues sur le site	
N°27250	Feu d'origine électrique	Surchauffe d'une résistance	-Endommagement du site	Chauffage par serpentins d'eau chaude Pas de résistances au niveau des bains de traitement de surface. Absence d'installation électrique à proximité des cuves
27/02/2004				Tuyauteries d'eau chaude.
Escrennes (45)			1	
N°44444 09/10/2013	Déversement de 450 l de peroxyde d'hydrogène à 35 %	Rupture d'un GRV de 1 m³ rempli à moitié suite à au transvasement du peroxyde d'hydrogène dans le GRV, entrainant une réaction entre produits incompatibles	Les pompiers évacuent une dizaine d'employés, obturent le réseau d'eau pluviale et	Le peroxyde d'hydrogène dispose de sa propre rétention. Les produits chimiques sont stockés de façon à ne pas créer

Désignation de l'accident	Type d'accident	Cause	Conséquence	Amélioration apportées Mesures de prévention AXIMUM
Ferrières-en-Bris (77)			récupèrent avec des absorbants la flaque de 20 m² qui s'est formée	d'incompatibilité en cas de déversement accidentel. (Différentes zones de stockage)
N°49421	Incendie dans une chaudronnerie	Un feu se déclare dans les poubelles (acte de malveillance) et impacte directement le stockage de bouteilles d'acétylène et provoque leurs explosions.	Les logements voisins sont endommagés. Une dizaine de personnes est en chômage technique.	Le stockage d'acétylène se trouve à l'extérieur et à distance des bâtiments (20 m). Aucun produit inflammable ou combustible n'est stocké à proximité des bouteilles Gardiennage et dispositif de sécurité (intrusion) sur le site
N° 40653)	Incendie machine-outil	Un feu se déclare sur une machine-outil dans une usine spécialisée dans le domaine de la fourniture de construction métallique.	Une importante fumée envahit le bâtiment et les 120 employés sont évacués. Les pompiers éteignent l'incendie avec 1 lance à mousse puis désenfument le bâtiment.	Stockage limité d'huile dans le bâtiment Utilisation d'huile non inflammable Vérification périodique des équipements Maintenance préventive des équipements Mise en place de moyen de lutte contre les incendies

Tableau 15 : Accidents comparables aux activités d'AXIMUM

Etude de Danger

4.8.2. Conclusions

Le retour d'expérience sur des accidents survenus sur installations similaires permet de constater que les accidents recensés sont principalement des incendies et des déversements. Ce qui est confirmé par l'analyse publiée par le Bureau d'Analyse des Risques et Pollutions Industrielles (BARPI) du Ministère de l'Environnement, qui porte sur les statistiques établies à partir de 10289 accidents survenus en France.

Les enseignements tirés de l'étude des incidents montrent :

- Une forte proportion de sinistres survient la nuit ou le week-end (importance de l'équipement en dispositifs de détection automatique, pour détection précoce du feu).
- Les pompiers sont fréquemment confrontés à des difficultés d'accès dues aux moyens de protection physique contre les intrusions
- Le stockage de marchandises à l'extérieur des bâtiments et le stationnement de camions bloquant les portes des quais de chargement pendant les périodes d'inactivité entravent l'intervention des secours et permettent l'extension des sinistres de l'intérieur vers l'extérieur et aussi l'inverse.
- Le recoupement des entrepôts par des parois coupe-feu permet de limiter l'extension des sinistres.
- L'accumulation des gaz chauds sous toitures favorise la propagation du feu (un bon dimensionnement des exutoires évacuant les fumées est essentiel).
- Un simple stockage de palettes vides en quantité importante dans un entrepôt où à l'extérieur doit être considéré comme particulièrement sensible au risque d'incendie.

Il est à noter que sur AXIMUM à Nogent-sur-Oise :

- Tous les produits sur le site Aximum sont disposés sur des rétentions permettant en cas de déversement d'éviter tout écoulement sur le site.
- Le site dispose de deux bassins de rétention des eaux pluviales de volumes respectifs de 698 et 457 m3 et d'un dispositif d'obturation pour chaque sortie de réseau d'eau pluvial permettant de contenir tout déversement dans le site.
- Le site dispose en outre de plusieurs protection incendie et stock très peu de produit inflammable.

4.8.3. Inventaires des accidents industriels survenus chez AXIMUM

Les accidents industriels font l'objet d'une remontée systématique d'information selon les procédures de l'entreprise et dans le respect des obligations réglementaires.

Le dernier accident est une rupture de la canalisation d'alimentation d'eau d'un bain de rinçage. La seule conséquence a été la présence d'eau dans la rétention, qui a ensuite été pompée.

Etude de Danger

4.9. SYNTHESE DES PHENOMENES DANGEREUX ASSOCIES AU SITE AXIMUM

Les critères de choix des phénomènes dangereux à étudier sont les suivants :

- Réalité physique des stockages, mesures de protection physique passive de grande ampleur,
- Limites physiques réalistes référencées par le retour d'expérience de la profession, du groupe, du site,
- Guides de l'état de l'art des différentes professions, études et publication scientifiques, rapport d'étude des groupes de travail du MEEDDAT (GTDLI....)
- Arrêtés et circulaires par type d'activités,
- Essais résultants de campagnes de mesures

Les principaux phénomènes dangereux associés au site sont la pollution suite à déversement accidentel.

Une réflexion doit également être menée sur les phénomènes dangereux suivants :

- UVCE et jet enflammé (gaz naturel),
- Incendie (GNR),
- Explosion de poussières (cabine de peinture).

Etude de Danger

5. METHODE D'ANALYSE DE RISQUES APPLIQUEE

Les étapes préalables nous ont permis de déterminer les cibles ou éléments vulnérables, les agressions externes possibles ainsi que les équipements critiques par système. Maintenant, l'objectif est de définir, tous les scénarios d'accidents physiquement envisageables puis de sélectionner les scénarios de référence via une cotation de la fréquence d'occurrence et la gravité.

Le présent paragraphe présente la méthode d'identification et de sélection des scénarios ainsi que les grilles de cotation appliquée.

5.1. LA METHODE MISE EN OEUVRE

5.1.1. Identification des scénarios d'accidents

Nous avons vu précédemment qu'il existe de nombreuses méthodes d'analyses des risques. Dans le cas présent, il est important de préciser que les installations étudiées ne mettent pas en œuvre de process de fabrication complexe. C'est pourquoi, la méthode qui sera mise en œuvre est une analyse préliminaire des risques.

Cette méthode repose sur deux enchaînements :

Eléments dangereux + Agression = Situation dangereuse

Situation dangereuse + Evénement aggravant = Accident

Il s'agit donc, dans un premier temps, d'identifier les éléments dangereux du site, puis pour chacun d'entre eux, d'identifier les situations dangereuses possibles. Nous pourrons alors déterminer les accidents et leurs conséquences.

Notons, que pour cette première étape, nous ne prenons pas en compte l'existence des barrières de sécurité. En effet, celles-ci sont identifiées et évaluées au cours d'une deuxième étape, décrite ci-après.

5.1.2. Prise en compte des barrières de sécurité

Dans un premier temps, il s'agit d'identifier les fonctions de sécurité génériques. Elles se traduisent par un verbe d'action suivi d'une intention à accomplir. Cinq verbes d'actions couvrent l'ensemble des fonctions de sécurité qu'il convient d'assurer pour maîtriser les risques d'accidents :

EVITER : Il s'agit de rendre un événement impossible. Cette fonction désigne généralement des modifications profondes des installations. Elle est à rapprocher du concept des procédés intrinsèquement plus sûrs ;

PREVENIR : Cette fois, il s'agit de limiter la probabilité d'occurrence d'un événement, sans toutefois pouvoir le rendre impossible ;

DETECTER : Il s'agit de détecter un événement. Cette fonction seule ne suffit généralement pas à assurer la maîtrise de l'accident et doit être associée à d'autres fonctions comme contrôler ou limiter notamment ;

Etude de Danger

CONTROLER : Il s'agit de maîtriser le déroulement d'une dérive, afin de ramener le système dans un état opérationnel en sécurité ;

LIMITER : la fonction « limiter » ou « réduire » consiste à agir sur les conséquences d'un événement, afin d'en réduire la gravité. Le système n'est en revanche pas ramené dans un état totalement sûr.

Pour chacune de ces fonctions de sécurité génériques, il est possible d'associer des barrières de sécurité. Elles peuvent être de trois types différents :

- Les barrières dites passives (rétention, murs coupe-feu) qui ne requièrent pas de source d'énergie extérieure pour remplir leur fonction de sécurité ;
- Les barrières dites actives qui nécessitent une source extérieure d'activation pour remplir leur fonction de sécurité. On y retrouve des organes mécaniques (soupapes, vannes...), des systèmes de régulation, des systèmes instrumentés de sécurité (activation sur alerte);
- Les barrières dites humaines, qui nécessitent l'intervention de l'homme pour remplir leur fonction de sécurité.

La seconde étape consiste à évaluer la performance de la barrière. Cette évaluation se base sur trois critères pour les barrières techniques : L'efficacité, le temps de réponse et le niveau de confiance.

Pour les barrières mettant en jeu une action humaine, les facteurs suivants seront pris en compte pour l'évolution de la barrière :

- Formation adéquate du personnel,
- Présence de procédures claires
- Accessibilité de la barrière,
- Nombre de tâches à réaliser,
- Facilité du diagnostic,
- Contrôle des opérations.

5.1.3. Sélection des scénarios de références

Afin de pouvoir sélectionner les scénarios de référence, il est nécessaire de juger de l'acceptabilité de chaque type de risque, le risque étant quantifié en fonction de la probabilité d'occurrence de l'événement redouté et de sa gravité. La criticité d'un risque est le produit de sa fréquence d'occurrence (P) par la gravité de ses conséquences (G).

Pour évaluer le risque de chaque scénario identifié lors de l'analyse préliminaire des risques nous utiliserons une matrice avec 5 niveaux de probabilité et 5 niveaux de gravité, telle que celle préconisé par la Circulaire Ministérielle du 10 mai 2010 et présentée ci-après.

Il est important de noter que, pour estimer la gravité des conséquences d'un accident, les hypothèses retenues seront majorantes.

Etude de Danger

Nous prendrons également en compte les données et statistiques relatives à l'accidentologie décrite précédemment. En effet, l'accidentologie nous permet d'apprécier la probabilité d'occurrence d'un type d'accidents et d'en mesurer l'ampleur des conséquences.

La matrice sera utilisée pour hiérarchiser le risque brut, c'est-à-dire le risque sans moyens de prévention ni de protection et le risque résiduel, c'est-à-dire le niveau de risques lorsque les moyens de maîtrise sont mis en place.

Il est nécessaire de hiérarchiser les différents événement redoutés (aléas) identifiés suivant des niveaux, par des approches de la connaissance des aléas, afin de :

- Hiérarchiser les aléas ;
- Identifier les mesures les plus productives en matière de réduction des risques ;
- Faire porter l'effort de sécurité en priorité sur les mesures de réduction des aléas inacceptables.

Il s'agit donc à ce stade de mettre en place un outil d'évaluation quantifiée des niveaux d'aléa ou en d'autres termes de la criticité des différents événements majeurs envisageables. Nous désignerons par R un niveau de risque correspondant à un couple (P, G) :

- P : niveau de probabilité d'occurrence de l'événement redouté (l'aléa), représenté sous la forme d'une fréquence d'occurrence par année;
- G : niveau de gravité des conséquences prévisibles.

5.2. LES GRILLES DE COTATION

5.2.1. Définition des niveaux de probabilité

La définition retenue pour les niveaux de probabilité est celle fournie par l'arrêté ministériel du 29 septembre 2005 relatif à l'évacuation et à la prise en compte de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classés soumises à autorisation. Cinq classes de probabilité sont définies sur la base d'une approche semi quantitative.

Etude de Danger

Classe de probabilité Type d'appréciation	E	D	С	В	А				
	« événement possible mais extrêmement peu probable » :	« événement très improbable » :	« événement improbable » :	« événement probable » :	« événement courant » :				
Qualitative (les définitions entre guillemets ne sont valables que si le nombre d'installations et le retour d'expérience sont suffisants)	n'est pas impossible au vu des connaissances actuelles, mais non rencontré au niveau mondial sur un très grand nombre d'années installations	s'est déjà produit dans ce secteur d'activité mais a fait l'objet de mesures correctives réduisant significativement sa probabilité	un événement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité	s'est produit et/ou peut se produire pendant la durée de vie de l'installation	s'est produit sur le site considéré et/ou peut se produire à plusieurs reprises pendant la durée de vie d'e l'installation malgré d'éventuelles mesures correctives				
Semi-quantitative		Cette échelle et intermédiaire entre les échelles qualitative et quantitative, et permet de tenir compte des mesures de maîtrise des risques mises en place, conformément à l'article 4 du présent arrêté							
Quantitative (par unité et par an)	10-5		10 ⁻³	10 ⁻²					

Tableau 16 : Classes de probabilité

L'évaluation de la fréquence de chacun des événements redoutés sera réalisée sur la base :

- Des classes de probabilité de l'arrêté du 29 septembre 2005 ;
- Du retour d'expérience issue de la base ARIA ;
- Du retour d'expérience d'AXIMUM.

5.2.2. Définition des niveaux de gravité

La définition retenue pour les niveaux de gravité est celle fournie par l'arrêté ministériel du 29 septembre 2005 relatif à l'évacuation et à la prise en compte de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classés soumises à autorisation.

Les cinq niveaux de gravités définis par l'arrêté ministériel du 29 septembre 2005 pour les effets directs sur les personnes, complétés par une appréciation des effets sur l'environnement et des effets sur les infrastructures. Ces définitions sont reportées dans le tableau ci-dessous.

		Conséquences sur	
Gravité	Les personnes internes et externes au site	Les biens	L'environnement
5	Plusieurs décès	Dommages énormes	Effets énormes
4	Un à trois décès	Dommages importants	Effets importants
3	Blessures graves (AT prolongé)	Dommages localisés	Effets localisés
2	Blessures mineures	Dommages mineurs	Effets mineurs
1	Blessures légères	Dommages légers	Faibles effets
0	Pas de blessés	Pas de dommage	Pas d'effet

Tableau 17 : Classes de probabilité

Etude de Danger

Dans le cas où les trois critères de l'échelle ne conduisent pas à la même classe de gravité, c'est la classe la plus grave qui est retenue.

5.2.3. Règles de décote

Afin d'intégrer les barrières de sécurité (structurelles, organisationnelles ou technique) dans l'évaluation des risques réalisée à l'aide de l'APR (Analyse Préliminaire des Risques), une grille de décote a été mise en place.

La décote appliquée sur le risque brute de l'APR se base sur des éléments relevant soit de la sécurité passive, soit de la sécurité active. Les deux tableaux suivants établissent les facteurs de réduction (décote) en fréquence ou en gravité en fonction de la nature de l'élément de sécurité en place.

Pour chacun des éléments de sécurité mentionné, un facteur de décote compris entre 0 et -2 est attribué, suivi de l'élément (fréquence ou gravité) sur lequel celui-ci doit être appliqué.

Les règles d'application des facteurs de décote sont :

- Pour les éléments de sécurité de type structurel : la décote s'applique sur la gravité de 0 à 2 :
- Pour les éléments de sécurité de type organisationnel : pour qu'il y ait une décote, il faut une conjonction de deux paramètres organisationnels ou la conjonction d'un paramètre organisationnel et d'un paramètre technique;
- Exemple : pour la prise en compte dans la décote d'un système de détection gaz (décote de -1), il faut qu'un plan de maintenance des équipements (décote de -1) soit en place. La décote appliquée pour le système de détection gaz sera de -1;
- Pour les éléments de sécurité du type technique : il est également nécessaire d'avoir une conjonction de deux paramètres pour valider la décote, soit la conjonction de deux éléments techniques, soit d'un élément technique et un élément organisationnel.

Type de			Applicable	
barrière	Description	Décote	à	Commentaires
Structurelle	Mur non coupe-feu	0	Gravité	Ne ralentit pas la propagation du feu
	Mur coupe-feu	-2	Gravité	Stoppe la propagation du feu sur une durée déterminée
	Structure du bâtiment en acier	-1	Gravité	La structure résiste peu de temps en cas d'incendie, mais son effondrement à pour action d'étouffer le feu
	Structure du bâtiment en béton	-2	Gravité	La structure a un comportement stable au feu
	Toiture coupe-feu	-2	Gravité	Evite la propagation du feu sur un temps déterminé
	Rétention	-1	Gravité	Réduit l'impact en cas de fuite
Organisationnelle	Distance entre les stockages	-1	Gravité	Réduit les risques de propagation en cas d'incendie, d'explosion, de fuite
	Substitution des produits	-2	Fréquence	Remplacement d'un produit par un produit moins dangereux

Type de barrière	Description	Décote	Applicable à	Commentaires
Technique	Disque de rupture	-1	Gravité	Evite une surpression dans un milieu confiné, réduit les conséquences d'une explosion
	Cuve double peau	-2	Fréquence	Réduit les risques de fuites et de pollution
	Type de joint sur les canalisations	-1	Fréquence	Le type de joint peut réduire le risque de fuite
	Canalisation soudée sans bride	-2	Fréquence	La soudure des raccords entre les canalisations réduit le risque de fuite

Tableau 18 : Exemples de décotes de sécurités passives

Type de barrière	Description	Décote	Applicable à	Commentaires
Organisationnelle	Formation du personnel	-1	Fréquence	Réduit les risques d'accident
	Gestion de la sécurité (plan de secours)	-1	Gravité	Réduit le temps d'intervention en cas d'anomalie ; évite les erreurs majeures pouvant conduire à une aggravation de la situation
	Equipe de 1 ^{ère} et 2 ^{ème} intervention	-1	Gravité	Temps d'intervention réduit, actions sur l'événement au plus tôt
	Pompier sur site	-2	Gravité	Réduit les risques de propagation, le temps d'intervention ; maintient et entretient les moyens de secours
	Fiche de poste	-1	Fréquence	Précise et informe le personnel sur les risques, définit les procédures opérationnelles
	Contrôle et inspection des équipements et installations	-1	Fréquence	Réduit les risques liés aux équipements (électrique)
	Plan de maintenance des équipements	-1	Fréquence	Prévient les risques de panne sur des équipements dit de sécurité (ventilation, vanne de coupure)
	Respect des règles de stockage des produits chimiques	-1	Fréquence	Respect des règles d'incompatibilité de stockage
Technique	Système d'extinction incendie automatique	-1	Gravité	Eteint ou retarde la propagation du feu
	Asservissement du process avec la ventilation	-1	Fréquence	Réduit le risque lié à la présence d'air vicié
	Système de détection (gaz, fuite)	-1	Fréquence	Détecte et met en sécurité les équipements avant que le seuil de danger ne soit atteint, alerte le personnel d'une situation dangereuse
	Equipement ATEX	-1	Fréquence	Réduit les risques d'amorce d'une explosion dans les zones définies comme à risque d'explosion
	Soupape de sécurité	-1	Fréquence	Régulation de pression sur un réseau, diminution des risques de rupture

Etude de Danger

Type de			Applicable							
barrière	Description	Décote	à	Commentaires						
	Electrovannes	-1	Gravité	Coupure d'une énergie (gaz, air) permettant l'arrêt du process (ne peut être pris en compte qu'en cas d'asservissement)						
	Matériel de protection incendie, agents moussant, lances, véhicules	-1	Gravité	Réduit le risque de propagation, contribue à la maîtrise de l'événement dans le périmètre du site						

Tableau 19 : Exemples de décotes de sécurités actives

5.2.4. Matrice d'acceptabilité

Un niveau d'aléa est caractérisé par un couple (G, P), dans lequel la priorité est donnée à la gravité G. L'ensemble des niveaux d'aléas possibles, en fonction des définitions de G et de P données ci-dessus, est représenté sous forme d'une matrice d'acceptabilité appelée encore « de criticité » où l'on trouve :

- En abscisse, les niveaux de gravité ;
- En ordonnée, les niveaux de probabilité.

Cette matrice de criticité permet de :

- Définir le domaine des aléas inacceptables ;
- Définir le domaine des aléas dans lequel il est possible de travailler, dans le cadre d'une démarche d'amélioration continue de la sécurité;
- Décider de la priorité à donner à la mise en place de moyens complémentaires de prévention ou de protection, pour réduire le niveau d'aléa du scénario considéré.

				Probabilité										
			Evénement possible mais extrêmement peu probable	Evénement très improbable	Evénement improbable	Evénement probable	Evénement courant							
			E	D	С	В	Α							
	5	Désastreux												
té	4	Catastrophique												
Gravité	3	Important												
5	2	Sérieux												
	1	Modéré												

Tableau 20 : Matrice de criticité

Les scénarios accidentels envisagés sont rangés en trois groupes d'aléas :

- Vert : situation acceptable ;
- Jaune : situation acceptable avec des mesures de maîtrise des risques ;
- Rouge: situation inacceptable.

Etude de Danger

Ce type de classement permet de :

- Mettre en évidence les enjeux sur le plan de la sécurité (notamment au stade de conception d'un nouveau procédé par exemple) ;
- Estimer l'efficacité des mesures envisagées ;
- Apprécier la progression des études et le niveau de sécurité finalement atteint par le système, compte tenu des différentes barrières mises en place.

Etude de Danger

6. MISE EN OEUVRE DE L'ANALYSE DES RISQUES

Dans la pratique les différentes étapes d'analyse de risque, ont été menées en groupe de travail pour répondre notamment aux objectifs suivants :

- Appropriation de l'étude de dangers par AXIMUM,
- Découpage fonctionnel des différents systèmes à étudier,
- Justification des cotations des probabilités d'occurrence des phénomènes dangereux en fonction du retour d'expérience de professionnels spécialisés dans leur activité,
- Assurer un examen approfondi des circonstances pouvant conduire à un accident majeur potentiel.
- Prise en compte des spécificités du site en matière d'environnement et de sécurité,
- Mise en œuvre pragmatique de mesures compensatoires le cas échéant,

6.1. ANALYSE PRELIMINAIRE DES RISQUES (APR) :

Une démarche méthodique est appliquée selon les étapes suivantes :

- 1) Sélection du système à étudier sur la base de la description fonctionnelle réalisée au préalable.
- 2) Recensement exhaustif des entités dangereuses associées à ce système.
- 3) Pour chaque entité dangereuse, identification des situations dangereuses et causes associée.
- 4) Identification des accidents potentiels, et prise en compte de l'effet associé.
- 5) Liste des mesures de sécurités en place sur le site : liste des barrières de prévention et protection.
- 6) Lorsque toutes les situations dangereuses ont été passées en revue pour le système considéré, choix d'un nouveau système et retour au point 2).

A partir des résultats de l'APR on dispose des données suivantes :

- la liste exhaustive des phénomènes dangereux pouvant avoir des effets sur les intérêts visés par l'article L. 511-1 du code de l'environnement,
- la liste des mesures de sécurité (barrières de prévention et protection) mises en œuvre pour la maîtrise des scénarios accidentels considérés

6.2. SYNTHESE DES PHENOMENES DANGEREUX ASSOCIES AU SITE AXIMUM

Pour chaque activité, les dangers ont été identifiés de manière systématique et décrit en détail dans le tableau ci-dessous. Dans ce tableau, sont notés :

- Le risque brut : il s'agit du risque qui existerait si aucun moyen de prévention ou de protection n'était mise en place ;
- Le risque résiduel : il s'agit du risque qui subsiste une fois les moyens de protection et de prévention existants pris en compte.

N°	SYSTÈME /	SOUS-	SCENARIO(S)	Evènement(s) redouté(s) causant la	Situation		remi otat		MESURE DE MAITRISE DES CAUSES ET DES	Décô		Deuxi cota		Scénario
	ACTIVITE	SYSTÈME	D'ACCIDENT	situation dangereuse	accidentelle	G	Р	С	EFFETS	te	G	Р	С	retenu
			D						- Les cuves sont sur rétention					
		Bains de	Déversement de produits	Fuite Débordement	Pollution des				- Kit anti déversement	- 1F				
1	Traitement	traitement / cuves	chimiques (fuite ou		sols et eaux	3	В	3B	- Vanne obturante	-2G	1	С	1C	Non
	de surface		débordement)						- Contrôles réguliers					
									- Maintenance préventive					
2		capitation des vaneurs acide défaillant l'air	Pollution de	2	В	2B	- Maintenance préventive	- 1F	1	С	1C	Non		
		vapeurs acide	vapeurs acide	défaillant	l'air		D	20	- Analyse des rejets atmosphériques	-1G	')	10	NOIT
		Zone de Réaction violente zinc/eau	Réaction						- Mise en place d'un barrage en périphérie du bain de zinc					
3	3		Innondation	Pollution des sols et eaux	3	В	3B	- Contrôle visuel par opérateur	- 2F -1G	2	D	2D	Non	
			zinc/eau						- Processus de séchage des pièces					
									- Capteurs de détection gaz					
	Galvanisation				Effets				- Coupure automatique de l'alimentation des brûleurs en cas de détection gaz (mise en sécurité)					
			Explosion d'un	Fuites des tuyaux /	thermiques Effets de				- Local de chauffe du bain de zinc en sous sol (structure béton)	- 2F		_		
4	Bainc de zinc Explosion d'un nuage de gaz bruleurs surpres Pollutic projecti	surpressions Pollution par projection de zinc	3	В	3B	- Détection CH4 et CO avec détecteur portable obligatoire pour le personnel se rendant dans le local	-1G	2	D	2D	Non			
				Ziiio				- Interdiction de fumer et permis feux obligatoire avant intervention						

N°	SYSTÈME /		SCENARIO(S)				remi otati		MESURE DE MAITRISE DES CAUSES ET DES	Décô		Deux cota		Scénario
	ACTIVITE	SYSTEME	D'ACCIDENT	situation dangereuse	accidentelle	G	Р	С	EFFETS	te	G	Р	С	retenu
		Turrente de		Surpression Fuite	Effets				- Tuyauteries gaz situées en hauteur (en aérien - hors chemin palan, hors portée)					
5		Tuyauterie de gaz naturel	UVCE	Rupture de tuyauterie	thermiques	4	В	4B	- Vérification périodique des tuyauterie gaz	- 1F	3	С	3C	Oui
		alimentation Galvanisation	Jet enflammé	Présence d'une source	Effets de surpressions				- Interdiction de fumer	- 1G				
				d'inflammation	3017103310113				- Permis feu					
6		Cabine de grenaillage			Pas de risque A	TEX	ζ, util	lisatio	n du corindon qui ne présente pas de risques particuliers					
									- Aspiration					
			Cabine de peinture Explosion d'un nuage de poussière	Accumulation de poussière	Effets thermiques	4			- Matériel ATEX					
7		Cabine de peinture		Source	Effets de surpressions		В	3 4B	- Nettoyage régulier de la cabine	- 2F -1G	2	С	2C	Oui
									- Interdiction de fumer					
									- Permis feu					
		Farmala	Fundada 117	Accumulation de gaz suite à une	Effets thermiques				- Aspiration	4.5				
8	Thermolaqua ge	Four de cuisson	Explosion liée au gaz	fuite Source	Effets de	3	С	3C	- Interdiction de fumer	- 1F -1G	2	D	2D	Non
				d'inflammation	surpressions				- Permis feu					
									- Tuyauteries gaz situées en hauteur (en aérien - hors chemin palan, hors portée)					
		Tours de de de		Surpression Fuite	Effets				 Vérification périodique des tuyauterie gaz 					
9		Tuyauterie de gaz naturel	UVCE	Rupture de tuyauterie	thermiques	4	В	4B	- Interdiction de fumer	- 1F	3	С	3C	Oui
		alimentation Thermolaquage	Jet enflammé	Jet enflammé Présence d'une source d'inflammation		•			- Permis feu	- 1G				5 5.

N°	SYSTÈME /			Evènement(s) redouté(s) causant la	Situation		remi otati	ière ion	MESURE DE MAITRISE DES CAUSES ET DES EFFETS	Décô te	_	Deuxi cotat		Scénario
	ACTIVITE	SYSTEME	D'ACCIDENT	situation dangereuse	accidentelle	G	Р	С			G	Р	С	retenu
			Explosion d'un	Accumulation de poussière	Effets thermiques				- Matériel ATEX					
10		Dépoussièreur	nuage de	Source	Effets de	2	В	2B	- Nettoyage régulier de la cabine	- 1F -1G	1	С	1C	Non
			poussière	d'inflammation	surpressions				- Event de surpression					
			Eventrement	Choc perçant un	Dispersion				 Stockage des poudres dans des poches plastiques et cartons 					
11		Stockage de	des sacs de	sac	de poudre non	2	В	2B	- Racks de stockage surélevés	- 2F	2	D	2D	Non
		peintures	poudres de peinture	Chute d'un sac	dangereuse dans l'air	_			- Sol balayé tous les jours					
					ualis i ali				- Dalle béton dans le local					
40		Stockage big bag poussières	Eventrement	Choc perçant un sac	Delledien		-	0.0	Carte d'enregistrement de contrôle du remplissage du big bag	- 1F		0	40	Nan
12		de peinture (déchets)	des "big bag"	Chute d'un sac	Pollution	2	В	2B	- Stockage sur zone imperméabilisée	-1G	1	C	1C	Non
									- Contrôle régulier et plan de maintenance des équipements					
		Dresseuse	Incendie suite à surchauffe ou	Surchauffe	Effets				- Présence d'un opérateur à proximité lorsque la machine est en fonctionnement	- 1F				
13		Coupe en vol	anomalie électrique	Anomalie électrique	thermiques	3	В	3B	- Le mur séparant les deux bâtiments est coupe-feu de degré 1h	-2G	1	С	1C	Non
			o o o o o o o o o o o o o o o o o o o						Le site dispose de moyens de lutte contre l'incendie (extincteurs)					
	Ligne fabrication	Presse							Contrôle régulier et plan de maintenance des équipements					
	supports	marquage hydraulique							- Présence d'un opérateur à proximité lorsque la machine					
14		Presse méca	Incendie	Surchauffe	Incendie	3	В	3B	est en fonctionnement - Le mur séparant les deux bâtiments est coupe-feu de	- 1F	1	С	1C	Non
		200T	incondic	Anomalie électrique	incondie	J		30	degré 1h	-2G	'		10	14011
		Profileuse							- Le site dispose de moyens de lutte contre l'incendie (extincteurs)					

N°	SYSTÈME /	SOUS-		Evènement(s) redouté(s) causant la	Situation		remi otat	ière ion	MESURE DE MAITRISE DES CAUSES ET DES EFFETS	Décô te	_	Deuxi cotat		Scénario
	ACTIVITE	SYSIEME	D'ACCIDENT	situation dangereuse	accidentelle	G	Р	С			G	Р	С	retenu
15		Groupes hydrauliques	Déversement accidentel	Fuite d'huile et absence de rétention	Pollution des sols et eaux	2	В	2B	Contrôle régulier et plan de maintenance des équipements Présence d'un opérateur à proximité lorsque la machine est en fonctionnement Système d'obturation du réseau Eaux Pluviales	- 1F -1G	1	С	1C	Non
16		Dresseuse Coupe en vol	Incendie suite à surchauffe ou anomalie électrique	Surchauffe Anomalie électrique	Effets thermiques	3	В	3B	- Contrôle régulier et plan de maintenance des équipements - Présence d'un opérateur à proximité lorsque la machine est en fonctionnement - Le mur séparant les deux bâtiments est coupe-feu de degré 1h - Le site dispose de moyens de lutte contre l'incendie (extincteurs)	- 1F -2G	1	С	1C	Non
17	Ligne fabrication glissières	Presse à selection Presse OMERA 200T Profileuse	Incendie	Surchauffe Anomalie électrique	Incendie	3	В	3В	- Contrôle régulier et plan de maintenance des équipements - Présence d'un opérateur à proximité lorsque la machine est en fonctionnement - Le mur séparant les deux bâtiments est coupe-feu de degré 1h - Le site dispose de moyens de lutte contre l'incendie (extincteurs)	- 1F -2G	1	С	1C	Non
18		JIDET Profileuse COMETAL	Déversement accidentel	Fuite d'huile et absence de rétention	Pollution des sols et eaux	2	В	2B	Contrôle régulier et plan de maintenance des équipements Présence d'un opérateur à proximité lorsque la machine est en fonctionnement Système d'obturation du réseau Eaux Pluviales	- 1F -1G	1	С	1C	Non
19	Autres matériels	Plieuse AMADA Cisaille AMADA Laser	Incendie suite à surchauffe ou anomalie électrique	Surchauffe Anomalie électrique	Effets thermiques	3	В	3B	Contrôle régulier et plan de maintenance des équipements Présence d'un opérateur à proximité lorsque la machine est en fonctionnement Le mur séparant les deux bâtiments est coupe-feu de degré 1h	- 1F -2G	1	С	1C	Non

N°	SYSTÈME /	sous-	SCENARIO(S)	Evènement(s) redouté(s) causant la	Situation	Première cotation			MESURE DE MAITRISE DES CAUSES ET DES	Décô	Deuxième cotation			Scénario
	ACTIVITE	SYSTÈME	D'ACCIDENT	situation dangereuse	accidentelle	G	Р	С	EFFETS	te	G	Р	С	retenu
									- Le site dispose de moyens de lutte contre l'incendie (extincteurs)					
20		Ligne écarteurs Presse COFMO Presse COLLY Perceuse	Incendie	Surchauffe Anomalie électrique	Incendie	3	В	3B	- Contrôle régulier et plan de maintenance des équipements - Présence d'un opérateur à proximité lorsque la machine est en fonctionnement - Le mur séparant les deux bâtiments est coupe-feu de degré 1h - Le site dispose de moyens de lutte contre l'incendie (extincteurs)	- 1F -2G	1	С	1C	Non
21		ALPHA Poinçoinneuses MUBEA Scie à ruban	Déversement accidentel	Fuite d'huile et absence de rétention	Pollution des sols et eaux	2	В	2B	Contrôle régulier et plan de maintenance des équipements Présence d'un opérateur à proximité lorsque la machine est en fonctionnement Système d'obturation du réseau Eaux Pluviales	- 1F- 1G	1	С	1C	Non
22	Installations	Stockage d'huiles (ECOCOOL 259ST+, RENOCLEAN SMC+,	Rupture de fût Incident lors de la manipulation de fût	Déversement accidentel	Pollution des sols et eaux	2	В	2B	Présence d'un opérateur à proximité Formation du personnel à la conduite des engins de manutentions Présence d'une rétention au niveau des stockages et système d'obturation du réseau Eaux Pluviales	- 1F -1G	1	С	1C	Non
23	annexes	RENOFORM BSW3003, ANTICORIT MKR 68, RENOLIN, RENOLIT)	Incendie à proximité (sur un équipement par exemple)	Départ de feu	Propagation de l'incendie	3	С	3С	- Présence d'un opérateur à proximité - Le mur séparant les deux bâtiments est coupe-feu de degré 1h - Le site dispose de moyens de lutte contre l'incendie (extincteurs)	- 2G	1	С	1C	Non

N°	SYSTÈME/ ACTIVITE	SOUS- SYSTÈME	SCENARIO(S) D'ACCIDENT Evènement(s) redouté(s) causant la	Situation		remi otat		MESURE DE MAITRISE DES CAUSES ET DES		Deuxième cotation			Scénario retenu	
	ACTIVITE	SYSTEME	D'ACCIDENT	situation dangereuse	accidentelle	G	Р	С	EFFETS	te	G	Р	С	retenu
			Déversement		Pollution des				- Contrôle régulier des équipements					
24		Dépotage acide	FILITA FLAVINIA	sols et eaux	2	В	2B	- Présence d'opérateurs sur site	- 1F	1	С	1C	Non	
24		chlorhydrique	Dégagement Vapeurs Acides	porteur Défaillance pompe	Pollution de l'air		ь	20	- Présence d'une rétention déportée enterrée	-1G	'	C	10	Non
			0						- Contrôle régulier des équipements					
			Surtension		Propagation				- Présence d'opérateurs sur site	- 1F				
25			Court-circuit	Incendie	de l'incendie	3	В	3B	- Le mur séparant les deux bâtiments est coupe-feu de degré 1h	-2G	1	С	1C	Non
		Transformateur	Foudre						Le site dispose de moyens de lutte contre l'incendie (extincteurs)					
				_,	Pollution des				- Contrôle régulier des équipements					
26			Fuite de diélectrique	Déversement accidentel	eaux et des sols	2	В	2B	- Présence d'opérateurs sur site	- 1F -1G	1	С	1C	Non
					5015	Ш			- Présence d'une rétention au niveau des transformateurs					
					Effets				- Contrôle régulier des équipements					
07			Surtension	Incendie	thermiques	_	1	0.0	- Présence d'opérateurs sur site	- 1F		0	1C	Man
27			Court-circuit	Explosion	Effets de	3	В	3B	 Le mur séparant les deux bâtiments est coupe-feu de degré 1h 	-2G	1	С	10	Non
		Compresseurs (Traitement et partie			surpressions				- Le site dispose de moyens de lutte contre l'incendie (extincteurs)					
		fabrication)							- Contrôle régulier des équipements					
28			Fuite d'huile	Déversement	Pollution des	2	В	2B	- Présence d'opérateurs sur site	- 1F	1	С	1C	Non
20				d'hydrocarbures	sols et eaux	et eaux			- Utilisation d'un mélange huile/eau	-1G				INOH

N°	SYSTÈME/	SOUS- SYSTÈME	SCENARIO(S) D'ACCIDENT redo caus situ	Evènement(s) redouté(s) causant la	Situation	1	Première cotation		MESURE DE MAITRISE DES CAUSES ET DES EFFETS		Deuxième cotation			Scénario retenu	
	ACTIVITE	SYSTEME		situation dangereuse	accidentelle	G	G P C				G	Р	С	retenu	
			Présence de	Présence d'une					- Les postes à souder sont placés dans une zone spécifique éloigné des stockages d'huile (combustible)						
			matières	source d'ignition à	Incendie par inflammation		В		- Présence d'opérateurs]					
29		Poste à souder	combustibles ou inflammables à	proximité de matières combustibles ou	des matières combustibles ou	3		3B	- Le mur séparant les deux bâtiments est coupe-feu de degré 1h	- 1F -2G	1	С	1C	Non	
			proximité	inflammables	inflammables				- Le site dispose de moyens de lutte contre l'incendie (extincteurs)						
			Dysfonctionne ment d'un radiant	Incendie					- Contrôle régulier des équipements						
					Propagation			- Présence d'opérateurs	- 1F			1C	Non		
30					de l'incendie 3	В	3B	- Le mur séparant les deux bâtiments est coupe-feu de degré 1h	-2G	1	С				
											Le site dispose de moyens de lutte contre l'incendie (extincteurs)				
		Radiants	Explosion d'un nuage de gaz	Surpression dans	Effets thermiques		В	В 3В	- Contrôle régulier des équipements et présence d'opérateurs					Non	
31				les tuyaux d'alimentation en					- Le mur séparant les deux bâtiments est coupe-feu de degré 1h	- 1F	4	0	1C		
31				gaz	Effets de	3			Fonctionnement en intermittence (période hivernale) et faible débit gaz	-2G	1	С	10		
				Fuites des tuyaux / radiants	surpressions				- Coupure d'alimentation gaz hors période hivernale	1					
									- Contrôle régulier des équipements						
		Stockage de	Incendie dans	Echauffement des	Explosion				- Eloignement des bouteilles de gaz en cas d'incendie	45			2D	Non	
32		bouteilles de gaz	le bâtiment bouteilles	bouteilles Montée en pression	des	4	С	4C	- Le stockage est isolé et fermé. Son accès est donc limité	- 1F -2G	2	D			
									- Refroidissement des bouteilles						

N°	SYSTÈME /	SOUS-	SCENARIO(S)	Evènement(s) redouté(s) causant la	Situation		rem otat	ière ion		Décô	Deuxième cotation			Scénario retenu		
	ACTIVITE	SYSTÈME	D'ACCIDENT	situation dangereuse	accidentelle	G	G P C		EFFETS	te	G	Р	С	retenu		
				Mauvaise	Effets				- Zone de stockage dédiée							
33		Stockage de bouteilles	Explosion des	manipulation Choc	thermiques	4	С	4C	- Arrimage des bouteilles	- 1F	2	D	2D	Non		
33		d'acétylène	bouteilles	Perte de confinement	Effets de	4		40	- Interdiction de fumer	-2G		D		NOIT		
				Source d'ignition	surpressions				- Permis feu							
			Déversement	0	Dalladian dan				- Contrôle régulier des équipements	45						
34			d'hydrocarbure s	Cuve percée Pistolet qui fuit	Pollution des sols et eaux	3	В	3B	- Obturateur de réseau	- 1F -2G	1	С	1C	Non		
		Cuve de fioul	3						- Présence d'une rétention							
		(GNR) Cuve percée	□#oto	F#44	Effets thermiques	⊑#oto	⊑#ata	F#44			- Extincteurs				2B	
35			Incendie - feu de nappe	Pistolet qui fuit Source d'ignition				3	В	3B	- Interdiction de fumer	- 1F	2	В		Oui
									- Permis feu							
36		Armoires	Incendie	Court circuit	Effets	2	В	B 3B	- Extincteurs	- 1G	1	В	1B	Non		
	_	électriques		Surtension	thermiques				- Corne d'alerte sonore							
									- Capteur de détection méthane dans le local chaufferie							
37		Chaufferie	Incendie /	Fuite Rupture de	Effets thermiques	hermiques 3 Effets de	В 3	3B	- Vérification périodique de la chaudière	- 2F	2	D	2D	Non		
			explosion	tuyauterie	Effets de surpressions		Effets de	le			- Interdiction de fumer					
									- Permis feu							

Etude de Danger

N°	SYSTÈME /		SCENARIO(S)	Evènement(s) redouté(s) causant la situation dangereuse	Situation		remi otat		MESURE DE MAITRISE DES CAUSES ET DES		Deuxième cotation			Scénario	
	ACTIVITE	SYSTÈME	D'ACCIDENT		accidentelle	G	Р	С	EFFETS	te	G	Р	С	retenu	
				Surpression					- Tuyauteries gaz situées en hauteur (en aérien - hors chemin palan, hors portée)						
	d'	Tuyauterie d'alimentation	UVCE	Fuite Rupture de	Effets thermiques		В		- Vérification périodique des tuyauterie gaz	- 1F					
38		chaufferie aérienne	Jet enflammé	tuyauterie Présence d'une	Effets de	Effets de		4B	- Interdiction de fumer	- 1G	3	С	3C	Oui	
		actionite		source d'inflammation	surpressions				- Permis feu						
			Déversement	oduits manipulation	Pollution des sols et eaux				- Rack sur rétention					Non	
							В		- Chariot muni de kit anti-déversement	45					
39			de produits					3B	- Obturateurs de réseau	- 1F -2G	1	С	1C		
			51 							- Surfaces imperméabilisées					
									- Sol imperméabilisé collecté						
40		Parking, voies		Fuite sur un	Pollution des				- Séparateurs hydrocarbures	- 1F		1			
40		de circulation		véhicule	sols et eaux	2	A	A	2A	- Obturateurs manuels (2 vannes manuelles) ou pompe de relevage située au niveau du rejet	- 1G	1	В	1B	Non
									- Kit anti-déversement						

Tableau 21 APR

Etude de Danger

6.3. ACCEPTABILITE DU RISQUE

Les différents scénarios d'accident ont été placés dans la grille d'acceptabilité suivante :

			Occurrence du phénomène										
		Evénement possible mais extrêmement peu probable	Evénement très improbable	Evénement improbable	Evénement probable	Evénement courant							
	Gravité	E	D	С	В	Α							
5	Désastreux												
4	Catastrophique												
3	Important			5 ;9 ;38									
2	Sérieux		3 ;4 ;8 ;11 ;32 ;33 ;37	7	35								
1	Modéré			1 ;2 ;10;12 à 31 ;34;39	36; 40								

Tableau 22 : Grille acceptabilité

Les scénarios accidentels envisagés sont rangés en trois groupes d'aléas :

- Vert : situation acceptable ;
- Jaune : situation acceptable avec des mesures de maîtrise des risques ;
- Rouge : situation inacceptable.

Ce type de classement permet de :

- Mettre en évidence les enjeux sur le plan de la sécurité (notamment au stade de conception d'un nouveau procédé par exemple);
- Estimer l'efficacité des mesures envisagées ;
- Apprécier la progression des études et le niveau de sécurité finalement atteint par le système, compte tenu des différentes barrières mises en place.

La notation suit le principe suivant : la mise en place de moyens de protection adaptés fait baisser la gravité d'un ou plusieurs points tandis que la mise en place de moyens de prévention adaptés fait baisser la fréquence. L'analyse préliminaire des risques présentés par les activités d'AXIMUM ne met en évidence aucun risque inacceptable.

Etude de Danger

Les scénarios retenus dans la suite de l'étude sont :

N° PhD	Phénomène dangereux modélisé	Localisation	Type d'effet
1	Feu de nappe de la rétention de GNR	A côté de l'aire de dépotage	Thermique
2	Explosion de poussières dans la cabine de peinture	Atelier thermolaquage	Surpression
3a	Rupture de la tuyauterie de gaz d'alimentation du four galvanisation – UVCE	Dans le hall de galvanisation	Surpression/Thermique
3b	Rupture de la tuyauterie de gaz d'alimentation du four galvanisation – jet enflammé	Dans le hall de galvanisation	Thermique
4a	Rupture de la tuyauterie de gaz d'alimentation de la chaudière eau chaude – UVCE	Dans le hall de galvanisation	Surpression/Thermique
4b	Rupture de la tuyauterie de gaz d'alimentation de la chaudière eau chaude – jet enflammé	Dans le hall de galvanisation	Thermique
5a	Rupture de la tuyauterie de gaz d'alimentation du thermolaquage dans le bâtiment galvanisation – UVCE	Dans le hall de galvanisation	Surpression/Thermique
5b	Rupture de la tuyauterie de gaz d'alimentation du thermolaquage dans le bâtiment galvanisation – jet enflammé	Dans le hall de galvanisation	Thermique
6a	Rupture de la tuyauterie de gaz d'alimentation du thermolaquage en façade extérieure de l'atelier – UVCE	Façade atelier thermolaquage	Surpression/Thermique
6b	Rupture de la tuyauterie de gaz d'alimentation du thermolaquage en façade extérieure de l'atelier – jet enflammé	Façade atelier thermolaquage	Thermique

Tableau 23 : Liste des phénomènes dangereux modélisés

Etude de Danger

7. ESTIMATION DES CONSEQUENCES DE LA LIBERATION DES POTENTIELS DE DANGER – ETUDE DES SCENARIOS DE REFERENCE

L'analyse préliminaire des risques a permis d'identifier **les phénomènes dangereux** susceptibles de se produire physiquement au sein de l'établissement.

Ce chapitre a pour objet de caractériser les phénomènes dangereux maximums retenu.

L'estimation de l'intensité des effets d'un phénomène dangereux permet d'identifier ceux pouvant conduire à des effets physiques importants ou non.

L'intensité ne tient pas compte de l'existence ou non de cibles exposées. Elle est cartographiée sous la forme de zones d'effets pour différents seuils.

7.1. <u>VALEURS DE REFERENCE DES SEUILS D'EFFETS DES PHENOMENES DANGEREUX</u>

L'arrêté du 29 septembre 2005, définit des valeurs de référence pour l'évaluation de la gravité des conséquences d'accidents potentiels.

7.1.1. Seuils des effets thermiques

Seuil (kW/m²)	Effets sur les structures et effets sur l'homme
3	 Seuil des effets irréversibles délimitant la « zone des dangers significatifs pour la vie humaine »
5	- Seuil des destructions de vitres significatives - Seuil des effets létaux délimitant la « zone des dangers graves pour la vie humaine »
8	 Seuil des effets dominos correspondant au seuil des dégâts graves sur les structures Seuil des effets létaux significatifs délimitant la « zone des dangers très grave pour la vie humaine »
16	 Seuil d'exposition prolongée des structures et correspondant au seuil des dégâts très graves sur les structures, hors structures béton
20	- Seuil de tenue au béton pendant plusieurs heures et correspondant au seuil des dégâts très graves sur les structures béton
200	- Seuil de ruine du béton en quelques dizaines de minutes

Tableau 24 : Seuils d'effets thermiques sur les structures et l'homme

En cas d'inflammation d'une matière combustible, le flux thermique correspond à la chaleur rayonnée sur le voisinage. Elle s'exprime en Watt par m² (W/m²) et correspond aux effets thermiques attendus sur les personnes et les installations environnantes.

Etude de Danger

7.1.2. Seuils des effets de surpression

Elle correspond à l'augmentation de pression dans le voisinage consécutive à l'explosion et s'exprime en bar. Les valeurs retenues sont celles correspondant aux dommages sur les bâtiments, plus pénalisantes que celles correspondant aux effets sur les personnes généralement plus élevées. Les effets observés pour plusieurs valeurs de surpressions sont présentés dans le tableau suivant :

Seuil (mbar)	Effets sur les structures et effets sur l'homme
20	- Seuil de destructions significatives des vitres
50	Seuil des dégâts légers sur les structuresSeuil des effets irréversibles sur l'homme
140	- Seuil des dégâts graves sur les structures - Seuil des premiers effets létaux sur l'homme
200	- Seuil des effets dominos - Seuil des effets létaux significatifs sur l'homme
300	- Seuils des dégâts très graves sur les structures

Tableau 25 : Seuils d'effets de surpression sur les structures et l'homme

7.1.3. Seuils des effets toxiques

Les valeurs retenues sont celles correspondant aux dommages sur les personnes, la dispersion d'un fluide toxique n'ayant pas d'effets sur les structures.

Seuil Effets sur l'homme					
SER	- Seuil des effets réversibles				
SEI - Seuil des effets irréversibles					
SEL (CL 1%)	- Seuil des premiers effets létaux (létalité de 1% de la population impactée)				
SELS (CL 5%)	- Seuil des effets létaux significatifs (létalité de 5% de la population impactée)				

Tableau 26 : Seuils d'effets toxiques sur l'homme

7.2. MODELISATIONS DES EFFETS DE LA LIBERATION DES POTENTIELS DE DANGERS

Le scénario maximum physiquement possible est quantifié pour cerner le potentiel de danger inhérent à l'installation étudiée. Il se rapporte à un accident majeur susceptible de se produire pour un équipement particulier.

7.2.1. Méthodes de calculs

Les calculs ont été réalisés en considérant systématiquement le scénario maximum physiquement possible et ce, en négligeant l'influence de tout système de prévention, protection et/ou d'intervention, de quelque nature que ce soit.

Etude de Danger

Les pages suivantes présentent par type d'effet **les hypothèses** de calculs retenues et **les résultats** obtenus (les plus pénalisants) pour les scénarios modélisés.

Dans ce cadre, les effets potentiels ont été évalués sur la base des seuils réglementaires de l'arrêté du 29 septembre 2005.

Les scénarios d'explosion et incendie de gaz ont été modélisés à l'aide de l'outil Phast 7.11.

La présentation de la méthodologie de calcul des effets d'un UVCE selon la méthode multiénergie est insérée en annexe 17*

Cf. annexe 17 méthodologie de calcul des effets d'un UVCE selon la méthode multi-énergie

7.2.2. Feu de nappe de la rétention de GNR – PhD 1

La modélisation des effets du feu de nappe de la rétention du GNR est effectuée à l'aide de l'outil de calcul proposé par l'INERIS sur le site Primarisk.

Cet outil reprend la feuille de calcul des effets thermiques d'un feu de nappe annexée à la Circulaire DPPR/SEI2/AL- 06- 357 du 31/01/07 relative aux études de dangers des dépôts de liquides inflammables - Compléments à l'instruction technique du 9 novembre 1989.

<u>Hypothèses</u>

Le réservoir est placé dans une rétention de dimensions 2,37 x 1,01 m.

Le produit stocké est un hydrocarbure.

<u>Résultats</u>

Hauteur de flamme : 1 m,
 Inclinaison de flamme : 70 °,
 Longueur de flamme : 3 m.

Le logiciel ne donne de résultat que pour une hauteur de cible inférieure à la hauteur de flamme.

La hauteur de cible est donc prise égale à 0,9 m.

Le logiciel indique que les distances d'effets sont « non pertinentes », ce qui signifie que les distances d'effets sont inférieures à 10 m. En effet, les résultats donnés en terme d'effets thermiques radiatifs sont généralement peu pertinents dans l'environnement proche de la flamme, pour lequel les effets liés au mode de transfert convectif ne peuvent être négligés.

Effets thermiques	Distance d'effet
Distance au seuil des effets irréversibles – 3 kW/m² (m)	< 10 m
Distance au seuil des premiers effets létaux – 5 kW/m² (m)	< 10 m
Distance au seuil des effets létaux significatifs – 8 kW/m² (m)	< 10 m

Etude de Danger

Distances d'effets à considérer à partir de la médiatrice du bord de la zone affectée par l'incendie

Tableau 27: Distances d'effets thermiques - PhD1

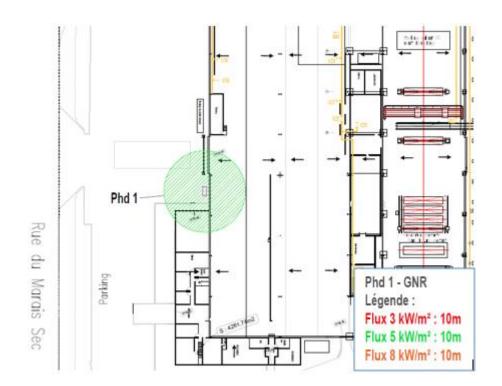


Figure 23 : Effets thermiques de l'incendie de la cuve GNR (aérienne)

Conclusions:

- Les zones d'effets correspondant aux seuils d'effets réglementaires ne sortent pas des limites de propriété.
- Il n'y a pas d'effets dominos.

Cf. annexe 18 cartographie des effets des phénomènes dangereux

7.2.3. Explosion de poussières dans la cabine de peinture – PhD 2

Les poussières en suspension dans la cabine de peinture sont susceptibles de générer une explosion en cas d'inflammation.

Cette modélisation est basée :

- Sur l'équation de Brode pour déterminer l'énergie disponible d'explosion,
- Sur la méthode multi-énergie pour évaluer l'atténuation des effets de pression.

Etude de Danger

Hypothèses

La cabine de peinture a pour dimensions 4,5 x 3,5 x 2,7 m, soit un volume de 42,5 m3.

Elle est composée de parois, portes et toiture métalliques.

Les portes sont dotées de vitres en verre d'épaisseur 2 mm.

Le guide de l'état de l'art sur les silos V3-2008 du MEEDDAT, donne des ordres de grandeurs de la résistance des éléments en fonction de leur constitution (tableau ci-dessous).

Nature de la paroi	Surpression de ruine (statique) Prupture
Tour de manutention en béton	100 à 300 mbar
Tour de manutention en bardage métallique ou en fibrociment	15 à 100 mbar
Tour de manutention en palplanches (tôles résistantes, type profils Omega)	300 à 1000 mbar
Cellules en béton : parois	150 à 1000 mbar
Cellules en béton : toits	100 à 400 mbar
Cellule métalliques : parois	300 à 1000 mbar
Cellules métalliques : toits	100 à 200 mbar
Galeries sur-cellules en béton	100 mbar
Briques	100 à 300 mbar
Tuiles	5 mbar
Verre simple/armé	3 à 25 mbar
Plaque polyester transparente (fixations crochets)	10 mbar
Polycarbonate avec des fixations crochets	10 mbar
Plaque amiante-ciment (fixations crochets)	10 à 100 mbar

Tableau 28 : Ordre de grandeurs de la résistance des matériaux

Ce tableau permet d'estimer la pression de rupture des divers éléments constituants les parois de la cabine :

Parois métallique : 300 à 1000 mbar,
Toit métallique : 100 à 200 mbar,
Vitres en verre : 3 à 25 mbar.

Ainsi ce sont les vitres en verre de la porte qui céderont en premier, avec une pression de rupture d'au maximum 25 mbar.

Détermination de l'énergie de l'explosion de poussières

La détermination de l'énergie de l'explosion de poussières s'effectue à partir de l'équation de

Brode simplifiée (en Joules) :

 $E = 3 \times V \times (P_{ex}-P_{atm})$

Etude de Danger

Avec : V : Volume de l'enceinte considérée, en m³, P_{ex}-P_{atm} : Pression relative de l'explosion en Pa,

Pex: pression absolue de l'explosion.

Le volume n'étant pas éventé, on retiendra dans une approche dimensionnante une pression relative P_{ex}-P_{atm} de l'explosion égale à 2 x P_{rupture}, où P_{rupture} est la pression statique de rupture de l'enceinte.

Comme indiqué au paragraphe précédent, la pression de rupture de l'enceinte est dimensionnée par les vitres en verre. Prupture = 25 mbar.

 $E = 3 \times 42,5 \times 2 \times 2500 = 637500 J$

Détermination des distances des effets de surpression

La détermination des distances des effets de surpression s'effectue en appliquant la méthode multi énergie indice 10, qui peut être majorante dans certains cas. Cette formule, respectant la physique du phénomène, donne les surpressions d'une onde de choc résultant d'un éclatement, en fonction de l'énergie d'explosion définie à l'étape précédente.

Le tableau suivant donne les distances associées aux effets de surpression :

Effets de surpression	Formule	Distance
Distance au seuil des effets indirects (m) – 20 mbar ²	2 x D _{50mbar}	20
Distance au seuil des effets irréversibles (m) – 50 mbar	0,11 E ^{1/3}	10
Distance au seuil des effets premiers létaux (m) – 140 mbar	0,05 E ^{1/3}	5
Distance au seuil des effets dominos (m) – 200 mbar	0,032 E ^{1/3}	3
Distance au seuil des effets dominos graves (m) – 300 mbar	0,028 E ^{1/3}	3

Tableau 29 : Distances d'effets de surpression – PhD 2

-

² Conformément à l'arrêté du 29 septembre 2005, nous avons retenu pour la surpression de 20 mbar une distance d'effets égale à deux fois la distance d'effet obtenue pour une surpression de 50 mbar.

Etude de Danger

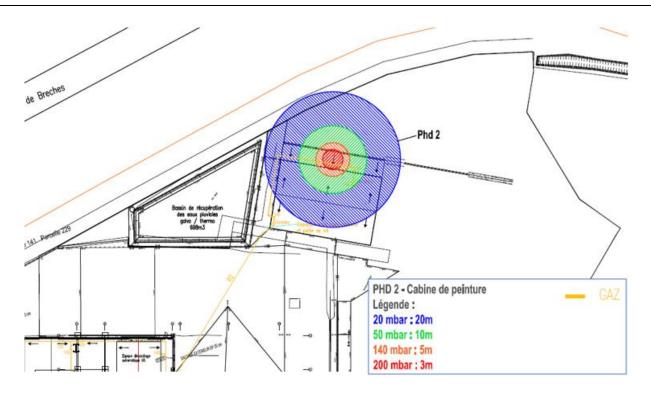


Figure 24 : Effets de surpression de l'explosion de poussières dans la cabine de peinture

Conclusions:

- Les zones d'effets correspondant aux seuils d'effets réglementaires ne sortent pas des limites de propriété.
- Il peut y avoir des effets dominos sur la tuyauterie d'alimentation en gaz du four de séchage entrainant le phénomène 6 (Rupture de la tuyauterie de gaz d'alimentation du thermolaquage en façade extérieure de l'atelier) 6a (UVCE) et/ou 6b (Jet enflammé).

Cf. annexe 18 cartographie des effets des phénomènes dangereux

7.2.4. Rupture de la tuyauterie de gaz d'alimentation du four galvanisation – PhD 3a et 3b

Hypothèses

Le scénario d'accident retenu est la rupture guillotine de la tuyauterie alimentant le four galvanisation et la fuite de gaz naturel dans l'atmosphère puis l'inflammation retardée du nuage de gaz entraînant une explosion à l'air libre (UVCE) ou l'inflammation immédiate de la fuite entraînant un jet enflammé.

Cette tuyauterie est située à l'intérieur du hall galvanisation.

Nous supposons la défaillance des barrières de sécurité et une durée de fuite « illimitée ».

Etude de Danger

Les différentes variables prises en compte pour la détermination du <u>terme source</u> sont présentées ci-dessous :

Variables	Unités	
Produit rejeté	-	Méthane
Pression interne	bar	0,35
Température interne	°C	20
Phase rejetée	-	Gaz
Angle du rejet / horizontal	0	0
Diamètre	mm	80

Tableau 30 : Hypothèses

Le débit de service dans la canalisation est de 255 Nm³/h.

Modèle de calcul

Le modèle de calcul des effets d'un UVCE selon la méthode multi-énergie est présenté en annexe 17.

PHAST 7.11 a été utilisé pour modéliser le scénario étudié.

Le logiciel permet de calculer l'évolution de différents paramètres du terme source au cours du temps (débit à la brèche, température, pression, ...).

Il distingue la zone en aval de la fuite (zone B) de la zone en amont (zone A).

Conditions météorologiques et orographiques

Les données <u>climatologiques</u> retenues pour la dispersion d'un nuage inflammable calculée à l'aide de PHAST, sont :

Vent 1 m/s - Cl. Pasquill F (Conditions très stables)		
Température ambiante	20°C	
Humidité relative	70 %	
Rayonnement solaire	0 kW/m ²	
Vitesse du vent (ref) à hauteur de référence	1 m/s à 10 m	
Profil de vent	Loi puissance	
Catégorie de stabilité	F	

Tableau 31 : Données climatologiques

Les conditions « classiques » D5 et F3 ne sont pas retenues, la tuyauterie n'étant pas situé à l'air libre, mais dans un grand hall en bardage métallique.

En effet les deux classes de stabilité atmosphérique généralement retenues sont :

Etude de Danger

- la classe de stabilité « F », plutôt représentative des conditions qualifiées de « très stables » rencontrées généralement de nuit; ces conditions ne sont compatibles qu'avec des vents de vitesse inférieure ou égale à 3 m/s (sinon les conditions ne sont plus très stables);
- la classe de stabilité « D », plutôt représentative des conditions qualifiées de « neutres » rencontrées plutôt de jour ; ces conditions ne sont compatibles qu'avec des vents de vitesse supérieure ou égale à 3 m/s.

La condition de stabilité « F » est retenue, la vitesse maximale de vent envisageable dans ce hall étant de 1 m/s (ventilation, ouvertures,...).

L'humidité relative retenue (de 70%) est cohérente avec la plupart des régions de France. Ce facteur influe sur les calculs de dispersion, et sur le taux d'absorption dans l'air du flux thermique émis par une flamme. Le flux reçu par une éventuelle cible dépend donc de ce facteur.

La valeur du paramètre de rugosité de 0,17 (soit une longueur de rugosité d'environ 1 m), qui est la valeur recommandée dans le manuel PHAST pour un scénario localisé dans un site industriel. Ce facteur influe directement sur les calculs de dispersion car il prend en compte les turbulences (et donc la dilution induite) entraînées par la présence d'obstacles sur le parcours du nuage dérivant.

Etude de Danger

UVCE - PhD 3a

Le graphique ci-dessous présente l'évolution du débit dans les zones A (amont) et B (aval) aux extrémités de la tuyauterie « Upstream » ainsi qu'au point de rejet « orifice ».

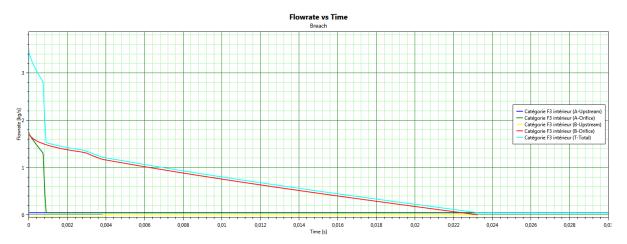


Figure 25 : Evolution du débit de gaz

On constate que le débit total au point de rejet (courbe « T-Total ») chute rapidement pour atteindre le débit de service dans la tuyauterie au bout d'environ 0,0024 secondes (durée de dépressurisation de la tuyauterie).

Pour la modélisation des conséquences de la fuite, DNV préconise de retenir le débit moyen sur les 20 premières secondes de la fuite : le débit calculé par PHAST est alors de 0,047 kg/s.

Cette rupture peut entraîner en cas d'ignition retardée une inflammation explosive du nuage de gaz relâché (UVCE).

Les résultats obtenus pour la dispersion méthane dans les conditions météorologiques F3 sont les suivants :

Conditions météorologiques	Unités	F3
Distance à la LII	m	3,66
Masse inflammable	kg	0,041

Tableau 32 : Caractéristiques de la dispersion de méthane

La masse inflammable participant à l'explosion est calculée par PHAST. Elle correspond à la quantité de vapeurs inflammables en concentration comprise entre la LIE et la LSE, à la composition stœchiométrique du gaz dans l'air. Elle est calculée par intégration numérique du profil de concentration du nuage.

Etude de Danger

Les figures suivantes montrent les profils du nuage inflammable formé dans les conditions F3. La courbe bleue représente la LII, la courbe verte représente la LSI.

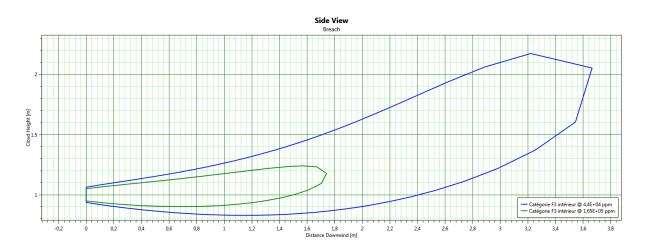


Figure 26 : Vue en coupe du nuage de gaz (condition météorologique F3)

Volume inflammable encombré

Par approche conservative, nous supposons l'encombrement de l'intégralité du volume explosible.

Choix de l'indice de violence

Le choix de l'indice de violence détermine le niveau de surpression maximal susceptible d'être atteint.

Ce niveau de surpression maximal est directement lié à la vitesse de flamme atteinte lors de la combustion du nuage. En théorie, il suffirait de calculer cette vitesse de flamme pour déterminer précisément l'indice de violence à retenir. En pratique, ce calcul est difficile à effectuer, car il dépend de plusieurs paramètres :

- la réactivité propre du gaz,
- la turbulence propre du jet,
- la densité d'obstacles présents sur le parcours de la flamme,
- l'énergie de la source d'inflammation.

Dans la pratique, l'indice de violence est donc déterminé sur la base de différentes recommandations et retours d'expérience.

Vis-à-vis des 4 paramètres précédents cités, nous apportons les éléments suivants :

La réactivité propre du gaz :

Extrait du « Guide des méthodes d'évaluation des effets d'une explosion de gaz à l'air libre » (INERIS - Juillet 1999)

Etude de Danger

"La composition du nuage inflammable a une influence sur les vitesses de propagation de flamme car :

- les combustibles n'ont pas tous la même réactivité,
- la réactivité d'un combustible donné dépend aussi de sa concentration dans le mélange avec l'air.

Pour quantifier la réactivité des combustibles, il est pertinent de se référer aux valeurs de la vitesse de combustion laminaire « Su » déjà définie dans ce rapport. A cet égard, les vitesses maximales de combustion laminaire de quelques combustibles gazeux courants sont reportées dans le tableau 1 suivant, tiré principalement de (Harris, 1983).

Gaz combustible mélangé à de l'air en proportion généralement un peu supérieure à la stœchiométrie. (-)	Vitesse maximum de combustion laminaire Su (m/s)
Hydrogène	3,5
Méthane	0,45
Ethane	0,53
Propane	0,52
Butane	0,5
Pentane	0,52
Hexane	0,52
Heptane	0,52
Acétylène	1,58
Ethylène	0,83
Propylène	0,66
Butylène	0,57
Benzène	0,62
Cyclohexane	0,52
Ammoniac ⁶	0,07

Tableau 33 : Vitesse de combustion de différents combustibles gazeux en proportion stœchiométrique avec l'air

Des valeurs de vitesses de combustion reportées dans le tableau précédent, il peut être notamment retenu que méthane et hydrogène sont des combustibles dont les réactivités sont extrêmes, l'hydrogène étant le gaz le plus réactif, le méthane étant l'un des moins réactifs."

Le méthane est donc un gaz peu réactif ce qui diminue la vitesse du front de flamme et donc le niveau de surpression maximum.

la turbulence propre du jet :

Dans notre cas, la turbulence propre du jet sera très limitée car la pression de rejet considérée est de 1,36 bars.

> la densité d'obstacles présents sur le parcours de la flamme :

Le confinement dans la zone d'expansion du nuage inflammable (jusqu'à 3,66 m du point de fuite), peut être considéré comme important (intérieur d'un bâtiment de production).

Etude de Danger

Le nuage inflammable correspond au nuage à une concentration de gaz entre le LIE et la LSE. C'est dans ce nuage inflammable que le front de flamme va se propager.

l'énergie de la source d'inflammation :

Ce paramètre n'est pas pris en compte dans notre calcul.

Par ailleurs dans sa note technique sur les UVCE dans un dépôt de liquide inflammable, le Groupe de Travail Dépôts de Liquides Inflammables indique retenir à titre indicatif les indices de sévérité représentatifs suivants pour l'inflammation à l'air libre d'un nuage combustible :

Zone indépendante siège d'explosion	Indice de sévérité et pic de pression correspondant
Zone dépourvue d'obstacle et d'installation avec un nuage homogène	Jusqu'à 3 (50 mbar)
Intérieur des cuvettes	4 (surpression = 100 mbar) à 5 (200 mbar) pour une cuvette encombrée
Pomperie	4 à 5 (200 mbar)
Poste de chargement / déchargement	4 à 6 (500 mbar) selon l'encombrement lié aux équipements en place (bras, tuyauteries,) et nombre de citernes (wagons et camions-citernes) pouvant être présents côte à côte aux postes
Zone de stationnement des véhicules	4 à 6 (500 mbar) selon configuration (supérieur à 5 au-dessus de 5 camions-citernes côte à côte)
Intérieur bâtiment de conception légère (ex : bardage)	4 à 6 (500 mbar) pour un bâtiment de conception légère Selon aménagement intérieur
Intérieur autre bâtiment	La méthode TNO Multi-Energy est inadaptée Un modèle spécifique peut être requis

Tableau 34 : Indices de sévérité indicatifs

Nous avons choisi de retenir un <u>indice de sévérité de 4</u> compte tenu de la faible réactivité du méthane, de la pression de rejet et au faible encombrement dans la zone d'expansion du nuage à la LIE, correspondant à un intérieur de bâtiment de conception légère (bardage métallique), la tuyauterie étant essentiellement située en hauteur (environ 5 m).

Centre de l'explosion

Le centre de l'explosion est positionné au « milieu » du nuage explosible.

Résultats : Effets de surpression

La figure suivante montre les distances d'effets dans les conditions F3 :

Etude de Danger

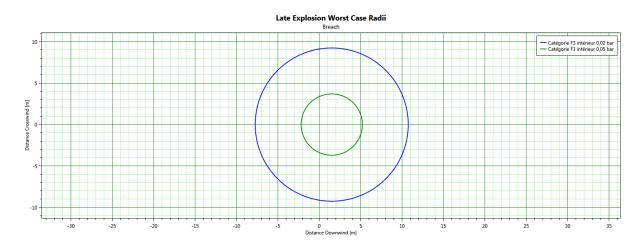


Figure 27 : Distance au seuil d'effets irréversibles – effets de surpression (condition météorologique F3)

Les distances d'effets de surpression obtenues pour l'UVCE sont données dans le tableau ciaprès:

Effets de surpression	
Distance au seuil des effets indirects (m) – 20 mbar ³	10
Distance au seuil des effets irréversibles (m) – 50 mbar	5
Distance au seuil des effets premiers létaux (m) – 140 mbar	NA
Distance au seuil des effets dominos (m) – 200 mbar	NA
Distance au seuil des effets dominos graves (m) – 300 mbar	NA

NA: Non Atteint

Les distances indiquées sont à considérer à partir du point de rejet

Tableau 35 : Distances d'effets de surpression

Résultats : Effets thermiques

La note technique "UVCE dans un dépôt de liquides inflammables du GTDLI de mai 2007" annexée à la "circulaire du 23 juillet 2007 relative à l'évaluation des risques et des distances d'effets autour des dépôts de liquides inflammables et des dépôts de gaz inflammables liquéfiés" indique concernant les effets thermiques d'un UVCE :

"L'expérience montre que l'effet du rayonnement thermique est assez limité, et que l'effet létal est dimensionné par la distance à la LII. Autrement dit, toute personne se trouvant sur le parcours des gaz brûlés est susceptible de subir un effet létal avec une probabilité élevée, et toute personne se trouvant en dehors du nuage inflammable ne peut pas subir d'effet thermique létal.

³ Conformément à l'arrêté du 29 septembre 2005, nous avons retenu pour la surpression de 20 mbar une distance d'effets égale à deux fois la distance d'effet obtenue pour une surpression de 50 mbar.

Etude de Danger

Dans le cas de l'explosion d'un nuage de gaz au repos en espace libre ou flash fire les seuils d'effets thermiques considérés sont :

- distance au seuil des effets létaux significatifs = distance à la LII
- distance au seuil des effets létaux = distance à la LII
- distance à l'effet irréversible = 1,1 x distance à la LII (formule forfaitaire)."

Les distances d'effets thermiques obtenues pour l'UVCE sont données dans le tableau ci-après :

Effets thermiques	F3
Distance à la LII (m)	3,66
Distance au seuil des effets irréversibles – 3 kW/m² (m)	4
Distance au seuil des premiers effets létaux – 5 kW/m² (m)	4
Distance au seuil des effets létaux significatifs – 8 kW/m² (m)	4

Les distances indiquées sont à considérer à partir du point de rejet, elles sont arrondies à l'entier supérieur.

Tableau 36: Distances d'effets thermiques - UVCE

Les zones d'effets thermiques ou de surpression les plus pénalisantes sont retenues pour l'UVCE, c'est-à-dire :

Seuil d'effet	Distance d'effet retenue
Distance au seuil des effets irréversibles	5 m
Distance au seuil des premiers effets létaux	4 m
Distance au seuil des effets létaux significatifs	4 m

Tableau 37 : Distances d'effets retenues pour l'UVCE

Etude de Danger

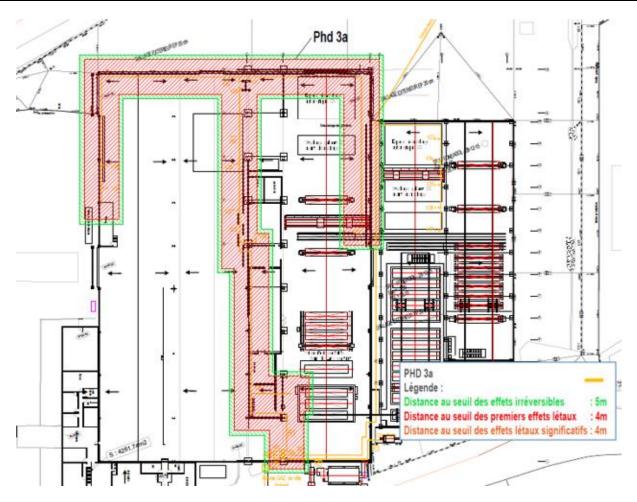


Figure 28 : Effets de surpression de la tuyauterie de gaz d'alimentation du four galvanisation

Conclusions:

- Les zones d'effets correspondant aux seuils d'effets réglementaires ne sortent pas des limites de propriété.
- Il peut y avoir des effets dominos sur les autres tuyauteries de gaz entrainant notamment la rupture de la tuyauterie de gaz d'alimentation de la chaudière eau chaude et/ou la rupture de la tuyauterie de gaz d'alimentation du thermolaquage dans le bâtiment galvanisation (Phénomènes dangereux 4a, 4b, 5a, 5b).

Cf. annexe 18 cartographie des effets des phénomènes dangereux

Jet enflammé - PhD 3b

La rupture de la tuyauterie peut entraîner en cas d'ignition instantanée la formation d'un jet enflammé (ou feu torche).

Etude de Danger

Les calculs des effets thermiques générés par le jet enflammé sont effectués à l'aide du logiciel PHAST 7.11 dans les conditions météorologiques F3.

Les résultats obtenus pour la dispersion du méthane sont les suivants :

Conditions météorologiques	F3
Longueur de flammes (m)	6,25

Tableau 38 : Longueur de flamme - Jet enflammé

Les seuils d'effets thermiques réglementaires ne sont pas atteint (flux inferieurs à 3 kW/m²).

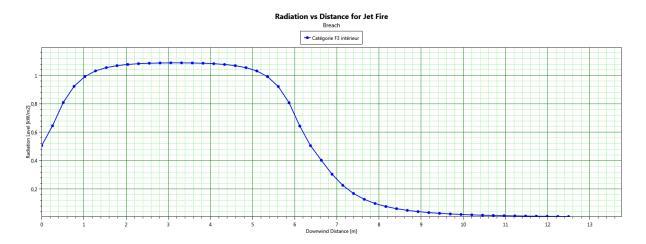


Figure 29 : Flux thermique en fonction de la distance (condition météorologique F3)

Etude de Danger

7.2.5. Rupture de la tuyauterie de gaz d'alimentation de la chaudière eau chaude – PhD 4a et 4b

Hypothèses

Le scénario d'accident retenu est la rupture guillotine de la tuyauterie alimentant la chaudière eau chaude et la fuite de gaz naturel dans l'atmosphère puis l'inflammation retardée du nuage de gaz entraînant une explosion à l'air libre (UVCE) ou l'inflammation immédiate de la fuite entraînant un jet enflammé.

Cette tuyauterie est située à l'intérieur du hall galvanisation.

Nous supposons la défaillance des barrières de sécurité et une durée de fuite « illimitée ».

Les différentes variables prises en compte pour la détermination du <u>terme source</u> sont présentées ci-dessous :

Variables	Unités	
Produit rejeté	-	Méthane
Pression interne	bar	0,35
Température interne	°C	20
Phase rejetée	-	Gaz
Angle du rejet / horizontal	0	0
Diamètre	mm	80

Tableau 39 : Hypothèses

Le débit de service dans la canalisation est de 59 Nm³/h.

Modèle de calcul

Le modèle de calcul des effets d'un UVCE selon la méthode multi-énergie est présenté en annexe 17.

PHAST 7.11 a été utilisé pour modéliser le scénario étudié.

Le logiciel permet de calculer l'évolution de différents paramètres du terme source au cours du temps (débit à la brèche, température, pression, ...).

Il distingue la zone en aval de la fuite (zone B) de la zone en amont (zone A). <u>Conditions météorologiques et orographiques</u>

Les données <u>climatologiques</u> retenues pour la dispersion d'un nuage inflammable calculée à l'aide de PHAST, sont :

Vent 1 m/s - Cl. Pasquill F (Conditions très stables)

Etude de Danger

Humidité relative	70 %
Rayonnement solaire	0 kW/m²
Vitesse du vent (ref) à hauteur de référence	1 m/s à 10 m
Profil de vent	Loi puissance
Catégorie de stabilité	F

Tableau 40 : Données climatologiques

Les conditions « classiques » D5 et F3 ne sont pas retenues, la tuyauterie n'étant pas situé à l'air libre, mais dans un grand hall en bardage métallique.

En effet les deux classes de stabilité atmosphérique généralement retenues sont :

- La classe de stabilité « F », plutôt représentative des conditions qualifiées de « très stables » rencontrées généralement de nuit ; ces conditions ne sont compatibles qu'avec des vents de vitesse inférieure ou égale à 3 m/s (sinon les conditions ne sont plus très stables) ;
- La classe de stabilité « D », plutôt représentative des conditions qualifiées de « neutres » rencontrées plutôt de jour ; ces conditions ne sont compatibles qu'avec des vents de vitesse supérieure ou égale à 3 m/s.

La condition de stabilité « F » est retenue, la vitesse maximale de vent envisageable dans ce hall étant de 1 m/s (ventilation, ouvertures,...).

L'humidité relative retenue (de 70%) est cohérente avec la plupart des régions de France. Ce facteur influe sur les calculs de dispersion, et sur le taux d'absorption dans l'air du flux thermique émis par une flamme. Le flux reçu par une éventuelle cible dépend donc de ce facteur.

La valeur du paramètre de rugosité de 0,17 (soit une longueur de rugosité d'environ 1 m), qui est la valeur recommandée dans le manuel PHAST pour un scénario localisé dans un site industriel. Ce facteur influe directement sur les calculs de dispersion car il prend en compte les turbulences (et donc la dilution induite) entraînées par la présence d'obstacles sur le parcours du nuage dérivant.

Etude de Danger

UVCE - PhD 4a

Le graphique ci-dessous présente l'évolution du débit dans les zones A (amont) et B (aval) aux extrémités de la tuyauterie « Upstream » ainsi qu'au point de rejet « orifice ».

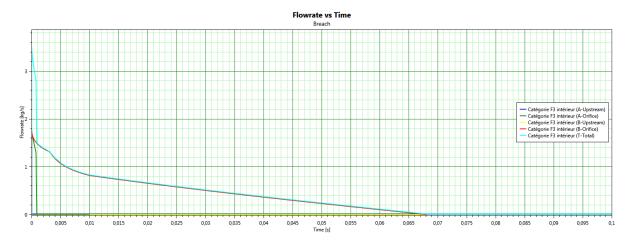


Figure 30 : Evolution du débit de gaz

On constate que le débit total au point de rejet (courbe « T-Total ») chute rapidement pour atteindre le débit de service dans la tuyauterie au bout d'environ 0,07 secondes (durée de dépressurisation de la tuyauterie).

Pour la modélisation des conséquences de la fuite, DNV préconise de retenir le débit moyen sur les 20 premières secondes de la fuite : le débit calculé par PHAST est alors de 0,013 kg/s.

Cette rupture peut entraîner en cas d'ignition retardée une inflammation explosive du nuage de gaz relâché (UVCE).

Les résultats obtenus pour la dispersion méthane dans les conditions météorologiques F3 sont les suivants :

Conditions météorologiques	Unités	F3
Distance à la LII	m	1,56
Masse inflammable	kg	0,006

Tableau 41 : Caractéristiques de la dispersion de méthane

La masse inflammable participant à l'explosion est calculée par PHAST. Elle correspond à la quantité de vapeurs inflammables en concentration comprise entre la LIE et la LSE, à la composition stœchiométrique du gaz dans l'air. Elle est calculée par intégration numérique du profil de concentration du nuage.

Etude de Danger

Les figures suivantes montrent les profils du nuage inflammable formé dans les conditions F3. La courbe bleue représente la LII, la courbe verte représente la LSI.

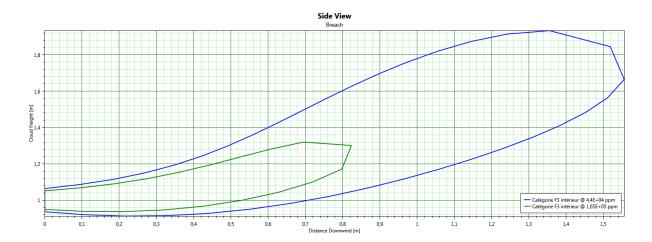


Figure 31 : Vue en coupe du nuage de gaz (condition météorologique F3)

Volume inflammable encombré

Par approche conservative, nous supposons l'encombrement de l'intégralité du volume explosible.

Choix de l'indice de violence

Le choix de l'indice de violence détermine le niveau de surpression maximal susceptible d'être atteint.

Ce niveau de surpression maximal est directement lié à la vitesse de flamme atteinte lors de la combustion du nuage. En théorie, il suffirait de calculer cette vitesse de flamme pour déterminer précisément l'indice de violence à retenir. En pratique, ce calcul est difficile à effectuer, car il dépend de plusieurs paramètres :

- La réactivité propre du gaz,
- La turbulence propre du jet,
- La densité d'obstacles présents sur le parcours de la flamme,
- L'énergie de la source d'inflammation.

Dans la pratique, l'indice de violence est donc déterminé sur la base de différentes recommandations et retours d'expérience.

Vis-à-vis des 4 paramètres précédents cités, nous apportons les éléments suivants :

Etude de Danger

La réactivité propre du gaz :

Extrait du « Guide des méthodes d'évaluation des effets d'une explosion de gaz à l'air libre » (INERIS - Juillet 1999)

"La composition du nuage inflammable a une influence sur les vitesses de propagation de flamme car :

- les combustibles n'ont pas tous la même réactivité,
- et car la réactivité d'un combustible donné dépend aussi de sa concentration dans le mélange avec l'air.

Pour quantifier la réactivité des combustibles, il est pertinent de se référer aux valeurs de la vitesse de combustion laminaire « Su » déjà définie dans ce rapport. A cet égard, les vitesses maximales de combustion laminaire de quelques combustibles gazeux courants sont reportées dans le tableau 1 suivant, tiré principalement de (Harris, 1983).

Gaz combustible mélangé à de l'air en proportion généralement un peu supérieure à la stœchiométrie. (-)	Vitesse maximum de combustion laminaire Su (m/s)
Hydrogène	3,5
Méthane	0,45
Ethane	0,53
Propane	0,52
Butane	0,5
Pentane	0,52
Hexane	0,52
Heptane	0,52
Acétylène	1,58
Ethylène	0,83
Propylène	0,66
Butylène	0,57
Benzène	0,62
Cyclohexane	0,52
Ammoniac ⁶	0,07

Tableau 42 : Vitesse de combustion de différents combustibles gazeux en proportion stœchiométrique avec l'air

Des valeurs de vitesses de combustion reportées dans le tableau précédent, il peut être notamment retenu que méthane et hydrogène sont des combustibles dont les réactivités sont extrêmes, l'hydrogène étant le gaz le plus réactif, le méthane étant l'un des moins réactifs."

Le méthane est donc un gaz peu réactif ce qui diminue la vitesse du front de flamme et donc le niveau de surpression maximum.

> La turbulence propre du jet :

Dans notre cas, la turbulence propre du jet sera très limitée car la pression de rejet considérée est de 1,36 bars.

Etude de Danger

La densité d'obstacles présents sur le parcours de la flamme :

Le confinement dans la zone d'expansion du nuage inflammable (jusqu'à 3,66 m du point de fuite), peut être considéré comme important (intérieur d'un bâtiment de production).

Le nuage inflammable correspond au nuage à une concentration de gaz entre le LIE et la LSE. C'est dans ce nuage inflammable que le front de flamme va se propager.

L'énergie de la source d'inflammation :

Ce paramètre n'est pas pris en compte dans notre calcul.

Par ailleurs dans sa note technique sur les UVCE dans un dépôt de liquide inflammable, le Groupe de Travail Dépôts de Liquides Inflammables indique retenir à titre indicatif les indices de sévérité représentatifs suivants pour l'inflammation à l'air libre d'un nuage combustible :

Zone indépendante siège d'explosion	Indice de sévérité et pic de pression correspondant	
Zone dépourvue d'obstacle et d'installation avec un nuage homogène	Jusqu'à 3 (50 mbar)	
Intérieur des cuvettes	4 (surpression = 100 mbar) à 5 (200 mbar) pour une cuvette encombré	
Pomperie	4 à 5 (200 mbar)	
	4 à 6 (500 mbar)	
Pasta do chargement / déchargement	selon l'encombrement lié aux équipements en place (bras,	
Poste de chargement / déchargement	tuyauteries,) et nombre de citernes (wagons et camions-citernes)	
	pouvant être présents côte à côte aux postes	
	4 à 6 (500 mbar)	
Zone de stationnement des véhicules	selon configuration (supérieur à 5 au-dessus de 5 camions-citernes côte	
	à côte)	
Intérieur bâtiment de conception légère	4 à 6 (500 mbar) pour un bâtiment de conception légère	
(ex : bardage)	Selon aménagement intérieur	
Intérieur autre bâtiment	La méthode TNO Multi-Energy est inadaptée	
inteneur autre patiment	Un modèle spécifique peut être requis	

Tableau 43 : Indices de sévérité indicatifs

Nous avons choisi de retenir un <u>indice de sévérité de 4</u> compte tenu de la faible réactivité du méthane, de la pression de rejet et au faible encombrement dans la zone d'expansion du nuage à la LIE, correspondant à un intérieur de bâtiment de conception légère (bardage métallique), la tuyauterie étant essentiellement située en hauteur (5 m).

Centre de l'explosion

Le centre de l'explosion est positionné au « milieu » du nuage explosible.

Résultats : Effets de surpression

Etude de Danger

La figure suivante montre les distances d'effets dans les conditions F3 :

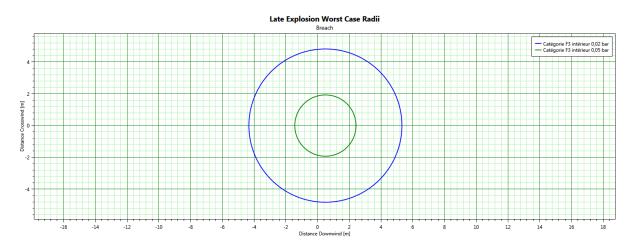


Figure 32 : Distance au seuil d'effets irréversibles – effets de surpression (condition météorologique F3)

Les distances d'effets de surpression obtenues pour l'UVCE sont données dans le tableau ciaprès :

Effets de surpression	F3
Distance au seuil des effets indirects (m) – 20 mbar ⁴	6
Distance au seuil des effets irréversibles (m) – 50 mbar	3
Distance au seuil des effets premiers létaux (m) – 140 mbar	NA
Distance au seuil des effets dominos (m) – 200 mbar	NA
Distance au seuil des effets dominos graves (m) – 300 mbar	NA

NA: Non Atteint

Les distances indiquées sont à considérer à partir du point de rejet

Tableau 44 : Distances d'effets de surpression

Résultats : Effets thermiques

La note technique "UVCE dans un dépôt de liquides inflammables du GTDLI de mai 2007" annexée à la "circulaire du 23 juillet 2007 relative à l'évaluation des risques et des distances d'effets autour des dépôts de liquides inflammables et des dépôts de gaz inflammables liquéfiés" indique concernant les effets thermiques d'un UVCE :

"L'expérience montre que l'effet du rayonnement thermique est assez limité, et que l'effet létal est dimensionné par la distance à la LII. Autrement dit, toute personne se trouvant sur le parcours

⁴ Conformément à l'arrêté du 29 septembre 2005, nous avons retenu pour la surpression de 20 mbar une distance d'effets égale à deux fois la distance d'effet obtenue pour une surpression de 50 mbar.

Etude de Danger

des gaz brûlés est susceptible de subir un effet létal avec une probabilité élevée, et toute personne se trouvant en dehors du nuage inflammable ne peut pas subir d'effet thermique létal.

Dans le cas de l'explosion d'un nuage de gaz au repos en espace libre ou flash fire les seuils d'effets thermiques considérés sont :

- distance au seuil des effets létaux significatifs = distance à la LII
- distance au seuil des effets létaux = distance à la LII
- distance à l'effet irréversible = 1,1 x distance à la LII (formule forfaitaire)."

Les distances d'effets thermiques obtenues pour l'UVCE sont données dans le tableau ci-après :

Effets thermiques	F3
Distance à la LII (m)	1,56
Distance au seuil des effets irréversibles – 3 kW/m² (m)	2
Distance au seuil des premiers effets létaux – 5 kW/m² (m)	
Distance au seuil des effets létaux significatifs – 8 kW/m² (m)	2

Les distances indiquées sont à considérer à partir du point de rejet, elles sont arrondies à l'entier supérieur.

Tableau 45 : Distances d'effets thermiques - UVCE

Les zones d'effets thermiques ou de surpression les plus pénalisantes sont retenues pour l'UVCE, c'est-à-dire :

Seuil d'effet	Distance d'effet retenue
Distance au seuil des effets irréversibles	3 m
Distance au seuil des premiers effets létaux	2 m
Distance au seuil des effets létaux significatifs	2 m

Tableau 46 : Distances d'effets retenues pour l'UVCE

Etude de Danger

Figure 33 : Effets de surpression de la tuyauterie de gaz d'alimentation de la chaudière

Conclusions:

- Les zones d'effets correspondant aux seuils d'effets réglementaires ne sortent pas des limites de propriété.
- Il peut y avoir des effets dominos sur les autres tuyauteries de gaz notamment la rupture de la tuyauterie de gaz d'alimentation du four galvanisation et/ou la rupture de la tuyauterie de gaz d'alimentation du thermolaquage dans le bâtiment galvanisation. Les phénomènes dangereux associés sont définis dans les scénarios 3a, 3b, 5a, 5b.

Cf. annexe 18 cartographie des effets des phénomènes dangereux

<u>Jet enflammé – PhD 4b</u>

La rupture de la tuyauterie peut entraîner en cas d'ignition instantanée la formation d'un jet enflammé (ou feu torche).

Les calculs des effets thermiques générés par le jet enflammé sont effectués à l'aide du logiciel PHAST 7.11 dans les conditions météorologiques F3.

Les résultats obtenus pour la dispersion du méthane sont les suivants :

Conditions météorologiques	F3
Longueur de flammes (m)	4,35

Tableau 47 : Longueur de flamme - Jet enflammé

Les seuils d'effets thermiques réglementaires ne sont pas atteints (flux inferieurs à 3 kW/m²).

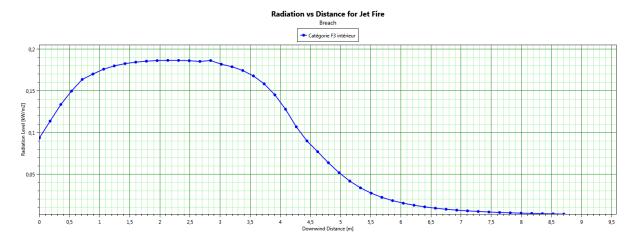


Figure 34 : Flux thermique en fonction de la distance (condition météorologique F3)

Etude de Danger

7.2.6. Rupture de la tuyauterie de gaz d'alimentation du thermolaquage dans le bâtiment galvanisation – PhD 5a et 5b

Hypothèses

Le scénario d'accident retenu est la rupture guillotine de la tuyauterie alimentant le thermolaquage dans sa partie aérienne traversant le hall de galvanisation et la fuite de gaz naturel dans l'atmosphère puis l'inflammation retardée du nuage de gaz entraînant une explosion à l'air libre (UVCE) ou l'inflammation immédiate de la fuite entraînant un jet enflammé.

Cette tuyauterie est située à l'intérieur du hall galvanisation.

Nous supposons la défaillance des barrières de sécurité et une durée de fuite « illimitée ».

Les différentes variables prises en compte pour la détermination du <u>terme source</u> sont présentées ci-dessous :

Variables	Unités	
Produit rejeté	-	Méthane
Pression interne	bar	0,35
Température interne	°C	20
Phase rejetée	-	Gaz
Angle du rejet / horizontal	0	0
Diamètre	mm	80

Tableau 48 : Hypothèses

Le débit de service dans la canalisation est de 39 Nm³/h.

Modèle de calcul

Le modèle de calcul des effets d'un UVCE selon la méthode multi-énergie est présenté en annexe 17

PHAST 7.11 a été utilisé pour modéliser le scénario étudié.

Le logiciel permet de calculer l'évolution de différents paramètres du terme source au cours du temps (débit à la brèche, température, pression, ...).

Il distingue la zone en aval de la fuite (zone B) de la zone en amont (zone A).

Conditions météorologiques et orographiques

Les données <u>climatologiques</u> retenues pour la dispersion d'un nuage inflammable calculée à l'aide de PHAST, sont :

Etude de Danger

Vent 1 m/s - Cl. Pasquill F (Conditions très stables)			
Température ambiante	20°C		
Humidité relative	70 %		
Rayonnement solaire	0 kW/m ²		
Vitesse du vent (ref) à hauteur de référence	1 m/s à 10 m		
Profil de vent	Loi puissance		
Catégorie de stabilité	F		

Tableau 49 : Données climatologiques

Les conditions « classiques » D5 et F3 ne sont pas retenues, la tuyauterie n'étant pas situé à l'air libre, mais dans un grand hall en bardage métallique.

En effet les deux classes de stabilité atmosphérique généralement retenues sont :

- La classe de stabilité « F », plutôt représentative des conditions qualifiées de « très stables » rencontrées généralement de nuit ; ces conditions ne sont compatibles qu'avec des vents de vitesse inférieure ou égale à 3 m/s (sinon les conditions ne sont plus très stables) ;
- La classe de stabilité « D », plutôt représentative des conditions qualifiées de « neutres » rencontrées plutôt de jour ; ces conditions ne sont compatibles qu'avec des vents de vitesse supérieure ou égale à 3 m/s.

La condition de stabilité « F » est retenue, la vitesse maximale de vent envisageable dans ce hall étant de 1 m/s (ventilation, ouvertures,...).

L'humidité relative retenue (de 70%) est cohérente avec la plupart des régions de France. Ce facteur influe sur les calculs de dispersion, et sur le taux d'absorption dans l'air du flux thermique émis par une flamme. Le flux reçu par une éventuelle cible dépend donc de ce facteur.

La valeur du paramètre de rugosité de 0,17 (soit une longueur de rugosité d'environ 1 m), qui est la valeur recommandée dans le manuel PHAST pour un scénario localisé dans un site industriel. Ce facteur influe directement sur les calculs de dispersion car il prend en compte les turbulences (et donc la dilution induite) entraînées par la présence d'obstacles sur le parcours du nuage dérivant.

Etude de Danger

UVCE - PhD 5a

Le graphique ci-dessous présente l'évolution du débit dans les zones A (amont) et B (aval) aux extrémités de la tuyauterie « Upstream » ainsi qu'au point de rejet « orifice ».

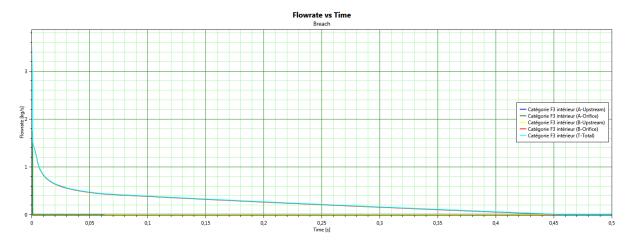


Figure 35 : Evolution du débit de gaz

On constate que le débit total au point de rejet (courbe « T-Total ») chute rapidement pour atteindre le débit de service dans la tuyauterie au bout d'environ 0,5 secondes (durée de dépressurisation de la tuyauterie).

Pour la modélisation des conséquences de la fuite, DNV préconise de retenir le débit moyen sur les 20 premières secondes de la fuite : le débit calculé par PHAST est alors de 0,013 kg/s.

Cette rupture peut entraîner en cas d'ignition retardée une inflammation explosive du nuage de gaz relâché (UVCE).

Les résultats obtenus pour la dispersion méthane dans les conditions météorologiques F3 sont les suivants :

Conditions météorologiques	Unités	F3
Distance à la LII	m	1,55
Masse inflammable	kg	0,006

Tableau 50 : Caractéristiques de la dispersion de méthane

La masse inflammable participant à l'explosion est calculée par PHAST. Elle correspond à la quantité de vapeurs inflammables en concentration comprise entre la LIE et la LSE, à la composition stœchiométrique du gaz dans l'air. Elle est calculée par intégration numérique du profil de concentration du nuage.

Etude de Danger

Les figures suivantes montrent les profils du nuage inflammable formé dans les conditions F3. La courbe bleue représente la LII, la courbe verte représente la LSI.

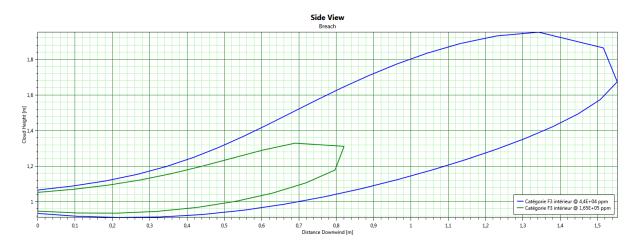


Figure 36 : Vue en coupe du nuage de gaz (condition météorologique F3)

Volume inflammable encombré

Par approche conservative, nous supposons l'encombrement de l'intégralité du volume explosible.

Choix de l'indice de violence

Le choix de l'indice de violence détermine le niveau de surpression maximal susceptible d'être atteint.

Ce niveau de surpression maximal est directement lié à la vitesse de flamme atteinte lors de la combustion du nuage. En théorie, il suffirait de calculer cette vitesse de flamme pour déterminer précisément l'indice de violence à retenir. En pratique, ce calcul est difficile à effectuer, car il dépend de plusieurs paramètres :

- La réactivité propre du gaz,
- La turbulence propre du jet,
- La densité d'obstacles présents sur le parcours de la flamme,
- L'énergie de la source d'inflammation.

Dans la pratique, l'indice de violence est donc déterminé sur la base de différentes recommandations et retours d'expérience.

Vis-à-vis des 4 paramètres précédents cités, nous apportons les éléments suivants :

La réactivité propre du gaz :

Extrait du « Guide des méthodes d'évaluation des effets d'une explosion de gaz à l'air libre » (INERIS - Juillet 1999)

Etude de Danger

"La composition du nuage inflammable a une influence sur les vitesses de propagation de flamme car :

- les combustibles n'ont pas tous la même réactivité,
- et car la réactivité d'un combustible donné dépend aussi de sa concentration dans le mélange avec l'air.

Pour quantifier la réactivité des combustibles, il est pertinent de se référer aux valeurs de la vitesse de combustion laminaire « Su » déjà définie dans ce rapport. A cet égard, les vitesses maximales de combustion laminaire de quelques combustibles gazeux courants sont reportées dans le tableau 1 suivant, tiré principalement de (Harris, 1983).

Gaz combustible mélangé à de l'air en proportion généralement un peu supérieure à la stœchiométrie. (-)	Vitesse maximum de combustion laminaire Su (m/s)
Hydrogène	3,5
Méthane	0,45
Ethane	0,53
Propane	0,52
Butane	0,5
Pentane	0,52
Hexane	0,52
Heptane	0,52
Acétylène	1,58
Ethylène	0,83
Propylène	0,66
Butylène	0,57
Benzène	0,62
Cyclohexane	0,52
Ammoniac ⁶	0,07

Tableau 51 : Vitesse de combustion de différents combustibles gazeux en proportion stœchiométrique avec l'air

Des valeurs de vitesses de combustion reportées dans le tableau précédent, il peut être notamment retenu que méthane et hydrogène sont des combustibles dont les réactivités sont extrêmes, l'hydrogène étant le gaz le plus réactif, le méthane étant l'un des moins réactifs."

Le méthane est donc un gaz peu réactif ce qui diminue la vitesse du front de flamme et donc le niveau de surpression maximum.

La turbulence propre du jet :

Dans notre cas, la turbulence propre du jet sera très limitée car la pression de rejet considérée est de 1,36 bars.

La densité d'obstacles présents sur le parcours de la flamme :

Le confinement dans la zone d'expansion du nuage inflammable (jusqu'à 3,66 m du point de fuite), peut être considéré comme important (intérieur d'un bâtiment de production).

Etude de Danger

Le nuage inflammable correspond au nuage à une concentration de gaz entre le LIE et la LSE. C'est dans ce nuage inflammable que le front de flamme va se propager.

> L'énergie de la source d'inflammation :

Ce paramètre n'est pas pris en compte dans notre calcul.

Par ailleurs dans sa note technique sur les UVCE dans un dépôt de liquide inflammable, le Groupe de Travail Dépôts de Liquides Inflammables indique retenir à titre indicatif les indices de sévérité représentatifs suivants pour l'inflammation à l'air libre d'un nuage combustible :

Zone indépendante siège d'explosion	Indice de sévérité et pic de pression correspondant
Zone dépourvue d'obstacle et d'installation avec un nuage homogène	Jusqu'à 3 (50 mbar)
Intérieur des cuvettes	4 (surpression = 100 mbar) à 5 (200 mbar) pour une cuvette encombrée
Pomperie	4 à 5 (200 mbar)
Poste de chargement / déchargement	4 à 6 (500 mbar) selon l'encombrement lié aux équipements en place (bras, tuyauteries,) et nombre de citernes (wagons et camions-citernes) pouvant être présents côte à côte aux postes
Zone de stationnement des véhicules	4 à 6 (500 mbar) selon configuration (supérieur à 5 au-dessus de 5 camions-citernes côte à côte)
Intérieur bâtiment de conception légère	4 à 6 (500 mbar) pour un bâtiment de conception légère
(ex : bardage)	Selon aménagement intérieur
Intérieur autre bâtiment	La méthode TNO Multi-Energy est inadaptée Un modèle spécifique peut être requis

Tableau 52 : Indices de sévérité indicatifs

Nous avons choisi de retenir un <u>indice de sévérité de 4</u> compte tenu de la faible réactivité du méthane, de la pression de rejet et au faible encombrement dans la zone d'expansion du nuage à la LIE, correspondant à un intérieur de bâtiment de conception légère (bardage métallique), la tuyauterie étant essentiellement située en hauteur (5 m).

Centre de l'explosion

Le centre de l'explosion est positionné au « milieu » du nuage explosible.

Etude de Danger

Résultats : Effets de surpression

La figure suivante montre les distances d'effets dans les conditions F3 :

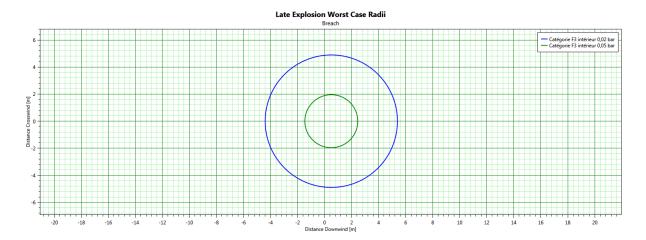


Figure 37 : Distance au seuil d'effets irréversibles – effets de surpression (condition météorologique F3)

Les distances d'effets de surpression obtenues pour l'UVCE sont données dans le tableau ciaprès :

Effets de surpression	F3
Distance au seuil des effets indirects (m) – 20 mbar ⁵	6
Distance au seuil des effets irréversibles (m) – 50 mbar	3
Distance au seuil des effets premiers létaux (m) – 140 mbar	NA
Distance au seuil des effets dominos (m) – 200 mbar	NA
Distance au seuil des effets dominos graves (m) – 300 mbar	NA

NA: Non Atteint

Les distances indiquées sont à considérer à partir du point de rejet Tableau 53 : Distances d'effets de surpression

Résultats : Effets thermiques

La note technique "UVCE dans un dépôt de liquides inflammables du GTDLI de mai 2007" annexée à la "circulaire du 23 juillet 2007 relative à l'évaluation des risques et des distances d'effets autour des dépôts de liquides inflammables et des dépôts de gaz inflammables liquéfiés" indique concernant les effets thermiques d'un UVCE :

⁵ Conformément à l'arrêté du 29 septembre 2005, nous avons retenu pour la surpression de 20 mbar une distance d'effets égale à deux fois la distance d'effet obtenue pour une surpression de 50 mbar.

Etude de Danger

"L'expérience montre que l'effet du rayonnement thermique est assez limité, et que l'effet létal est dimensionné par la distance à la LII. Autrement dit, toute personne se trouvant sur le parcours des gaz brûlés est susceptible de subir un effet létal avec une probabilité élevée, et toute personne se trouvant en dehors du nuage inflammable ne peut pas subir d'effet thermique létal.

Dans le cas de l'explosion d'un nuage de gaz au repos en espace libre ou flash fire les seuils d'effets thermiques considérés sont :

- distance au seuil des effets létaux significatifs = distance à la LII
- distance au seuil des effets létaux = distance à la LII
- distance à l'effet irréversible = 1,1 x distance à la LII (formule forfaitaire)."

Les distances d'effets thermiques obtenues pour l'UVCE sont données dans le tableau ci-après :

Effets thermiques	F3
Distance à la LII (m)	1,55
Distance au seuil des effets irréversibles – 3 kW/m² (m)	2
Distance au seuil des premiers effets létaux – 5 kW/m² (m)	2

Les distances indiquées sont à considérer à partir du point de rejet, elles sont arrondies à l'entier supérieur.

Tableau 54 : Distances d'effets thermiques – UVCE

Les zones d'effets thermiques ou de surpression les plus pénalisantes sont retenues pour l'UVCE, c'est-à-dire :

Seuil d'effet	Distance d'effet retenue
Distance au seuil des effets irréversibles	3 m
Distance au seuil des premiers effets létaux	2 m
Distance au seuil des effets létaux significatifs	2 m

Tableau 55 : Distances d'effets retenues pour l'UVCE

Etude de Danger

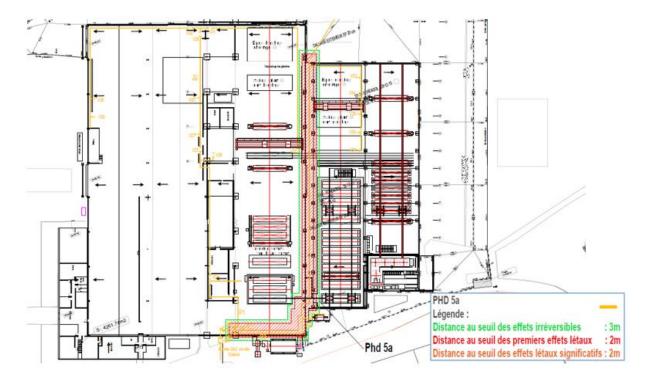


Figure 38 : Effets de surpression de la tuyauterie de gaz d'alimentation du thermolaquage dans le bâtiment galvanisation

Conclusions:

- Les zones d'effets correspondant aux seuils d'effets réglementaires ne sortent pas des limites de propriété.
- Il peut y avoir des effets dominos sur les autres tuyauteries de gaz notamment la rupture de la tuyauterie d'alimentation du four galvanisation et/ou la rupture de la tuyauterie de gaz d'alimentation de la chaudière. Les scénarios par effet dominos sont analysés en 3a, 3b 4a et 4b.

Cf. annexe 18 cartographie des effets des phénomènes dangereux

Etude de Danger

<u>Jet enflammé – PhD 5b</u>

La rupture de la tuyauterie peut entraîner en cas d'ignition instantanée la formation d'un jet enflammé (ou feu torche).

Les calculs des effets thermiques générés par le jet enflammé sont effectués à l'aide du logiciel PHAST 7.11 dans les conditions météorologiques F3.

Les résultats obtenus pour la dispersion du méthane sont les suivants :

Conditions météorologiques	F3
Longueur de flammes (m)	4,41

Tableau 56 : Longueur de flamme - Jet enflammé

Les seuils d'effets thermiques réglementaires ne sont pas atteints (flux inferieurs à 3 kW/m²).



Figure 39 : Flux thermique en fonction de la distance (condition météorologique F3)

Etude de Danger

7.2.7. Rupture de la tuyauterie de gaz d'alimentation du thermolaquage en façade extérieure de l'atelier – PhD 6a et 6b

Hypothèses

Le scénario d'accident retenu est la rupture guillotine de la tuyauterie alimentant le thermolaquage dans sa partie aérienne en façade de l'atelier et la fuite de gaz naturel dans l'atmosphère puis l'inflammation retardée du nuage de gaz entraînant une explosion à l'air libre (UVCE) ou l'inflammation immédiate de la fuite entraînant un jet enflammé.

Nous supposons la défaillance des barrières de sécurité et une durée de fuite « illimitée ».

Les différentes variables prises en compte pour la détermination du <u>terme source</u> sont présentées ci-dessous :

Variables	Unités	
Produit rejeté	-	Méthane
Pression interne	bar	0,35
Température interne	°C	20
Phase rejetée	-	Gaz
Angle du rejet / horizontal	٥	0
Diamètre	mm	50

Tableau 57 : Hypothèses

Le débit de service dans la canalisation est de 39 Nm³/h.

Modèle de calcul

Le modèle de calcul des effets d'un UVCE selon la méthode multi-énergie est présenté en annexe 17.

PHAST 7.11 a été utilisé pour modéliser le scénario étudié.

Le logiciel permet de calculer l'évolution de différents paramètres du terme source au cours du temps (débit à la brèche, température, pression, ...).

Il distingue la zone en aval de la fuite (zone B) de la zone en amont (zone A).

Etude de Danger

Conditions météorologiques et orographiques

Les données <u>climatologiques</u> retenues pour la dispersion d'un nuage inflammable calculée à l'aide de PHAST, sont :

Vent 3 m/s - Cl. Pasquill F (Conditions très stables)		
Température ambiante	15°C	
Humidité relative	70 %	
Rayonnement solaire	0 kW/m ²	
Vitesse du vent (ref) à hauteur de référence	3 m/s à 10 m	
Profil de vent	Loi puissance	
Catégorie de stabilité	F	

Vent 5 m/s - Cl. Pasquill D (Conditions neutres)		
Température ambiante	20°C	
Humidité relative	70 %	
Rayonnement solaire	0,5 kW/m ²	
Vitesse du vent (ref) à hauteur de référence	5 m/s à 10 m	
Profil de vent	Loi puissance	
Catégorie de stabilité	D	

Tableau 58 : Données climatologiques

Deux classes de stabilité atmosphérique ont donc été retenues :

- La classe de stabilité « F », plutôt représentative des conditions qualifiées de « très stables » rencontrées généralement de nuit; ces conditions ne sont compatibles qu'avec des vents de vitesse inférieure ou égale à 3 m/s (sinon les conditions ne sont plus très stables);
- La classe de stabilité « D », plutôt représentative des conditions qualifiées de « neutres » rencontrées plutôt de jour ; ces conditions ne sont compatibles qu'avec des vents de vitesse supérieure ou égale à 3 m/s.

Dans les conditions de stabilité « F » avec un vent faible, le nuage dérivant se disperse (ou se dilue) difficilement dans l'air et reste concentré sur une plus longue distance.

L'humidité relative retenue (de 70%) est cohérente avec la plupart des régions de France. Ce facteur influe sur les calculs de dispersion, et sur le taux d'absorption dans l'air du flux thermique émis par une flamme. Le flux reçu par une éventuelle cible dépend donc de ce facteur.

La valeur du paramètre de rugosité de 0,17 (soit une longueur de rugosité d'environ 1 m), qui est la valeur recommandée dans le manuel PHAST pour un scénario localisé dans un site industriel. Ce facteur influe directement sur les calculs de dispersion car il prend en compte les turbulences (et donc la dilution induite) entraînées par la présence d'obstacles sur le parcours du nuage dérivant.

Etude de Danger

UVCE - PhD 6a

Le graphique ci-dessous présente l'évolution du débit dans les zones A (amont) et B (aval) aux extrémités de la tuyauterie « Upstream » ainsi qu'au point de rejet « orifice ».

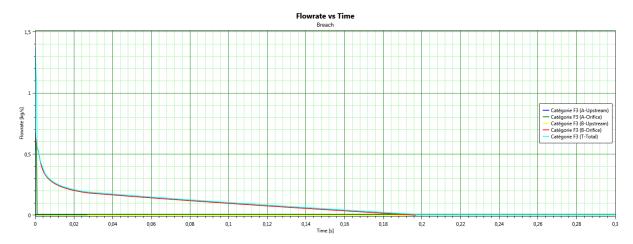


Figure 40 : Evolution du débit de gaz

On constate que le débit total au point de rejet (courbe « T-Total ») chute rapidement pour atteindre le débit de service dans la tuyauterie au bout d'environ 0,2 secondes (durée de dépressurisation de la tuyauterie).

Pour la modélisation des conséquences de la fuite, DNV préconise de retenir le débit moyen sur les 20 premières secondes de la fuite : le débit calculé par PHAST est alors de 0,008 kg/s.

Cette rupture peut entraîner en cas d'ignition retardée une inflammation explosive du nuage de gaz relâché (UVCE).

Les résultats obtenus pour la dispersion méthane dans les conditions météorologiques F3 et D5 sont les suivants :

Conditions météorologiques	Unités	F3	D5
Distance à la LII	m	1,2	1,34
Masse inflammable	kg	0,0024	0,0010

Tableau 59 : Caractéristiques de la dispersion de méthane

La masse inflammable participant à l'explosion est calculée par PHAST. Elle correspond à la quantité de vapeurs inflammables en concentration comprise entre la LIE et la LSE, à la composition stœchiométrique du gaz dans l'air. Elle est calculée par intégration numérique du profil de concentration du nuage.

Les figures suivantes montrent les profils du nuage inflammable formé dans les conditions F3 puis D5. La courbe bleue représente la LII, la courbe verte représente la LSI.

Etude de Danger

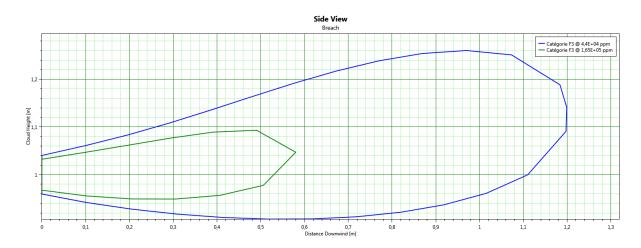


Figure 41 : Vue en coupe du nuage de gaz (condition météorologique F3)

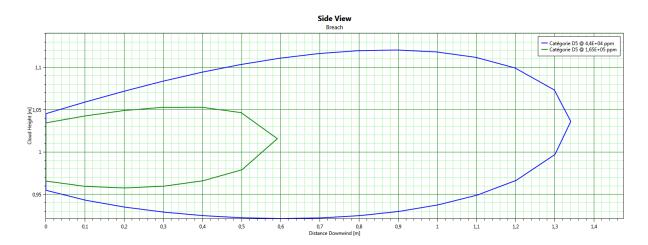


Figure 42 : Vue en coupe du nuage de gaz (condition météorologique D5)

Volume inflammable encombré

Par approche conservative, nous supposons l'encombrement de l'intégralité du volume explosible.

Choix de l'indice de violence

Le choix de l'indice de violence détermine le niveau de surpression maximal susceptible d'être atteint.

Ce niveau de surpression maximal est directement lié à la vitesse de flamme atteinte lors de la combustion du nuage. En théorie, il suffirait de calculer cette vitesse de flamme pour déterminer précisément l'indice de violence à retenir. En pratique, ce calcul est difficile à effectuer, car il dépend de plusieurs paramètres :

La réactivité propre du gaz,

Etude de Danger

- La turbulence propre du jet,
- La densité d'obstacles présents sur le parcours de la flamme,
- L'énergie de la source d'inflammation.

Dans la pratique, l'indice de violence est donc déterminé sur la base de différentes recommandations et retours d'expérience.

Vis-à-vis des 4 paramètres précédents cités, nous apportons les éléments suivants :

La réactivité propre du gaz :

Extrait du « Guide des méthodes d'évaluation des effets d'une explosion de gaz à l'air libre » (INERIS - Juillet 1999)

"La composition du nuage inflammable a une influence sur les vitesses de propagation de flamme car :

- les combustibles n'ont pas tous la même réactivité,
- et car la réactivité d'un combustible donné dépend aussi de sa concentration dans le mélange avec l'air.

Pour quantifier la réactivité des combustibles, il est pertinent de se référer aux valeurs de la vitesse de combustion laminaire « Su » déjà définie dans ce rapport. A cet égard, les vitesses maximales de combustion laminaire de quelques combustibles gazeux courants sont reportées dans le tableau 1 suivant, tiré principalement de (Harris, 1983).

Gaz combustible mélangé à de l'air en proportion généralement un peu supérieure à la stœchiométrie. (-)	Vitesse maximum de combustion laminaire Su (m/s)
Hydrogène	3,5
Méthane	0,45
Ethane	0,53
Propane	0,52
Butane	0,5
Pentane	0,52
Hexane	0,52
Heptane	0,52
Acétylène	1,58
Ethylène	0,83
Propylène	0,66
Butylène	0,57
Benzène	0,62
Cyclohexane	0,52
Ammoniac ⁶	0,07

Tableau 60 : Vitesse de combustion de différents combustibles gazeux en proportion stœchiométrique avec l'air

Etude de Danger

Des valeurs de vitesses de combustion reportées dans le tableau précédent, il peut être notamment retenu que méthane et hydrogène sont des combustibles dont les réactivités sont extrêmes, l'hydrogène étant le gaz le plus réactif, le méthane étant l'un des moins réactifs."

Le méthane est donc un gaz peu réactif ce qui diminue la vitesse du front de flamme et donc le niveau de surpression maximum.

> La turbulence propre du jet :

Dans notre cas, la turbulence propre du jet sera très limitée car la pression de rejet considérée est de 1,36 bars.

La densité d'obstacles présents sur le parcours de la flamme :

Le confinement dans la zone d'expansion du nuage inflammable (jusqu'à 3,66 m du point de fuite), peut être considéré comme important (intérieur d'un bâtiment de production).

Le nuage inflammable correspond au nuage à une concentration de gaz entre le LIE et la LSE. C'est dans ce nuage inflammable que le front de flamme va se propager.

L'énergie de la source d'inflammation :

Ce paramètre n'est pas pris en compte dans notre calcul.

Par ailleurs dans sa note technique sur les UVCE dans un dépôt de liquide inflammable, le Groupe de Travail Dépôts de Liquides Inflammables indique retenir à titre indicatif les indices de sévérité représentatifs suivants pour l'inflammation à l'air libre d'un nuage combustible :

Zone indépendante siège d'explosion	Indice de sévérité et pic de pression correspondant		
Zone dépourvue d'obstacle et d'installation avec un nuage homogène	Jusqu'à 3 (50 mbar)		
Intérieur des cuvettes	4 (surpression = 100 mbar) à 5 (200 mbar) pour une cuvette encombrée		
Pomperie	4 à 5 (200 mbar)		
	4 à 6 (500 mbar)		
Poste de chargement / déchargement	selon l'encombrement lié aux équipements en place (bras,		
Poste de chargement / dechargement	tuyauteries,) et nombre de citernes (wagons et camions-citernes)		
	pouvant être présents côte à côte aux postes		
	4 à 6 (500 mbar)		
Zone de stationnement des véhicules	selon configuration (supérieur à 5 au-dessus de 5 camions-citernes côte		
	à côte)		

Etude de Danger

Intérieur bâtiment de conception légère	4 à 6 (500 mbar) pour un bâtiment de conception légère		
(ex : bardage)	Selon aménagement intérieur		
Intérieur autre bâtiment	La méthode TNO Multi-Energy est inadaptée		
interieur autre patiment	Un modèle spécifique peut être requis		

Tableau 61 : Indices de sévérité indicatifs

Nous avons choisi de retenir un <u>indice de sévérité de 4</u> compte tenu de la faible réactivité du méthane, de la pression de rejet et du relativement faible encombrement dans la zone d'expansion du nuage à la LIE.

Centre de l'explosion

Le centre de l'explosion est positionné au « milieu » du nuage explosible.

Résultats : Effets de surpression

La figure suivante montre les distances d'effets dans les conditions F3 puis D5 :

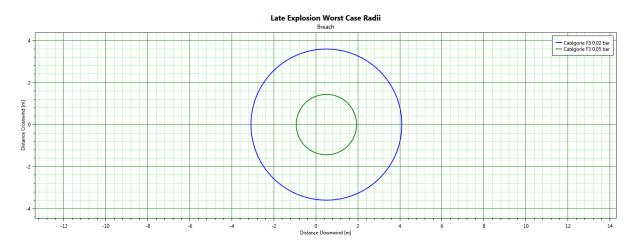


Figure 43 : Distance au seuil d'effets irréversibles – effets de surpression (condition météorologique F3)

Etude de Danger

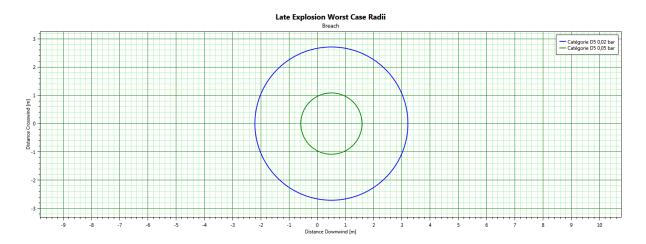


Figure 44 : Distance au seuil d'effets irréversibles – effets de surpression (condition météorologique D5)

Les distances d'effets de surpression obtenues pour l'UVCE sont données dans le tableau ciaprès :

Effets de surpression	F3	D5
Distance au seuil des effets indirects (m) – 20 mbar ⁶	4	4
Distance au seuil des effets irréversibles (m) – 50 mbar	2	2
Distance au seuil des effets premiers létaux (m) – 140 mbar	NA	NA
Distance au seuil des effets dominos (m) – 200 mbar	NA	NA
Distance au seuil des effets dominos graves (m) – 300 mbar	NA	NA

NA: Non Atteint

Les distances indiquées sont à considérer à partir du point de rejet

Tableau 62 : Distances d'effets de surpression

Résultats : Effets thermiques

La note technique "UVCE dans un dépôt de liquides inflammables du GTDLI de mai 2007" annexée à la "circulaire du 23 juillet 2007 relative à l'évaluation des risques et des distances d'effets autour des dépôts de liquides inflammables et des dépôts de gaz inflammables liquéfiés" indique concernant les effets thermiques d'un UVCE :

"L'expérience montre que l'effet du rayonnement thermique est assez limité, et que l'effet létal est dimensionné par la distance à la LII. Autrement dit, toute personne se trouvant sur le parcours des gaz brûlés est susceptible de subir un effet létal avec une probabilité élevée, et toute personne se trouvant en dehors du nuage inflammable ne peut pas subir d'effet thermique létal.

⁶ Conformément à l'arrêté du 29 septembre 2005, nous avons retenu pour la surpression de 20 mbar une distance d'effets égale à deux fois la distance d'effet obtenue pour une surpression de 50 mbar.

Etude de Danger

Dans le cas de l'explosion d'un nuage de gaz au repos en espace libre ou flash fire les seuils d'effets thermiques considérés sont :

- distance au seuil des effets létaux significatifs = distance à la LII
- distance au seuil des effets létaux = distance à la LII
- distance à l'effet irréversible = 1,1 x distance à la LII (formule forfaitaire)."

Les distances d'effets thermiques obtenues pour l'UVCE sont données dans le tableau ci-après :

Effets thermiques	F3	D5
Distance à la LII (m)	1,2	1,34
Distance au seuil des effets irréversibles – 3 kW/m² (m)	2	2
Distance au seuil des premiers effets létaux – 5 kW/m² (m)	2	2
Distance au seuil des effets létaux significatifs – 8 kW/m² (m)	2	2

Les distances indiquées sont à considérer à partir du point de rejet, elles sont arrondies à l'entier supérieur.

Tableau 63 : Distances d'effets thermiques – UVCE

Etude de Danger

Les zones d'effets thermiques ou de surpression les plus pénalisantes sont retenues pour l'UVCE, c'est-à-dire :

Seuil d'effet	Distance d'effet retenue
Distance au seuil des effets irréversibles	2 m
Distance au seuil des premiers effets létaux	2 m
Distance au seuil des effets létaux significatifs	2 m

Tableau 64 : Distances d'effets retenues pour l'UVCE

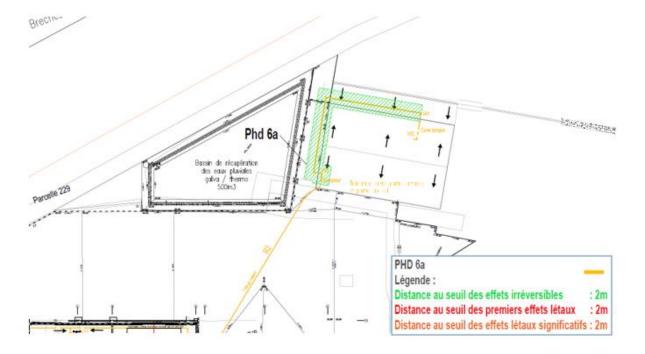


Figure 45 : Effets de surpression de la tuyauterie de gaz d'alimentation du thermolaquage en façade extérieure de l'atelier

Conclusions:

- Les zones d'effets correspondant aux seuils d'effets réglementaires ne sortent pas des limites de propriété.
- Il peut y avoir un effet domino sur la cabine de peinture.

Cf. annexe 18 cartographie des effets des phénomènes dangereux

Etude de Danger

<u>Jet enflammé – PhD 6b</u>

La rupture de la tuyauterie peut entraîner en cas d'ignition instantanée la formation d'un jet enflammé (ou feu torche).

Les calculs des effets thermiques générés par le jet enflammé sont effectués à l'aide du logiciel PHAST 7.11 dans les conditions météorologiques F3 et D5.

Les résultats obtenus pour la dispersion du méthane sont les suivants :

Conditions météorologiques	F3	D5
Longueur de flammes (m)	3,48	3,51

Tableau 65 : Longueur de flamme - Jet enflammé

Les seuils d'effets thermiques réglementaires ne sont pas atteints (flux inferieurs à 3 kW/m²).

Figure 46 : Flux thermique en fonction de la distance (condition météorologique F3)
Radiation vs Distance for Jet Fire

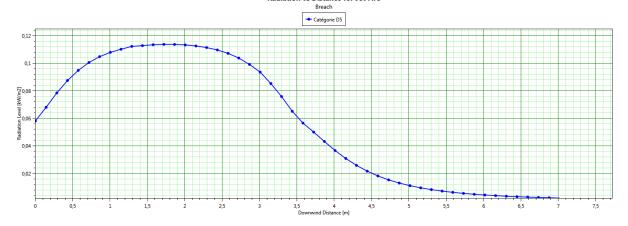


Figure 47 : Flux thermique en fonction de la distance (condition météorologique F3)

Etude de Danger

Tableau récapitulatif des effets dominos potentiels

N° scénario	Phénomène dangereux modélisé (*)	Localisation	Type d'effet	Installations potentiellement impactées
1	Feu de nappe de la rétention de GNR	A côté de l'aire de dépotage	Thermique	1
2	Explosion de poussières dans la cabine de peinture	Atelier thermolaquage	Surpression	Tuyauterie d'alimentation en gaz du four de séchage (PhD 6a, 6b)
3a	Rupture de la tuyauterie de gaz d'alimentation du four galvanisation – UVCE	Dans le hall de galvanisation	Surpression/Thermique	Autres tuyauteries gaz (4a, 4b, 5a, 5b)
3b	Rupture de la tuyauterie de gaz d'alimentation du four galvanisation – jet enflammé	Dans le hall de galvanisation	Thermique	/
4a	Rupture de la tuyauterie de gaz d'alimentation de la chaudière eau chaude – UVCE	Dans le hall de galvanisation	Surpression/Thermique	Autres tuyauteries gaz (3a, 3b, 5a, 5b)
4b	Rupture de la tuyauterie de gaz d'alimentation de la chaudière eau chaude – jet enflammé	Dans le hall de galvanisation	Thermique	/
5a	Rupture de la tuyauterie de gaz d'alimentation du thermolaquage dans le bâtiment galvanisation – UVCE	Dans le hall de galvanisation	Surpression/Thermique	Autres tuyauteries gaz (3a, 3b, 4a, 4b)
5b	Rupture de la tuyauterie de gaz d'alimentation du thermolaquage dans le bâtiment galvanisation – jet enflammé	Dans le hall de galvanisation	Thermique	/
6a	Rupture de la tuyauterie de gaz d'alimentation du thermolaquage en façade extérieure de l'atelier – UVCE	Façade atelier thermolaquage	Surpression/Thermique	Cabine peinture
6b	Rupture de la tuyauterie de gaz d'alimentation du thermolaquage en façade extérieure de l'atelier – jet enflammé	Façade atelier thermolaquage	Thermique	/

Tableau 66 : Liste des effets dominos potentiels

Etude de danger

142/149

Remarque sur les effets dominos, rayons de danger et moyens d'intervention

L'étude de dangers prend en compte des scénarii maximum entraînant les conséquences les plus graves envisageables telles que l'incendie généralisé d'un stockage ou d'un atelier dans leur intégralité.

Un phénomène dangereux ayant son origine sur une installation voisine ne peut donc, par tout effet (en particulier par effet missile), donner lieu à un phénomène dangereux aux conséquences supérieures à celles déjà prises en compte sur l'installation cible. Et inversement, les rayons de danger dus aux effets dominos sur une installation sont inclus dans les rayons de danger de cette installation.

8. ANALYSE DETAILLEE DES RISQUES

L'objectif de l'analyse détaillée des risques est d'effectuer une cotation en probabilité, gravité et cinétique des accidents majeurs conduisant à des effets à l'extérieur du site. Cette cotation est réalisée sans et avec les barrières de sécurité mises en place sur le site.

Suite à l'étude de l'estimation des conséquences des scénarios retenus, il s'avère qu'il n'y a pas de phénomène dangereux susceptible de présenter des effets sortants des limites de propriété.

Une analyse détaillée des risques avec quantification de la probabilité et gravité n'est donc pas nécessaire.

9. DESCRIPTION DES MOYENS DE PREVENTION, DE PROTECTION ET D'INTERVENTION

9.1. <u>DISPOSITIONS GENERALES DE PREVENTION</u>

Sur le site, différentes mesures sont en place pour prévenir les incidents :

- Interdiction de fumer dans l'établissement.
- L'accès à l'intérieur du site n'est possible qu'au personnel d'AXIMUM, aux personnes autorisées ou accompagnées.
- La délivrance d'un « permis de feu » précisant les consignes de sécurité lors de travaux de maintenance nécessitant l'emploi de matériel pouvant créer des points chauds ou des étincelles est obligatoire.
- La délivrance d'un « permis de travail » signé par l'intervenant et le responsable des travaux est obligatoire lors de l'intervention de toute entreprise extérieure.
- Les installations électriques, les engins de levage, les installations de combustion, le matériel incendie sont vérifiées périodiquement par un organisme agréé.
- L'établissement dispose d'une équipe de maintenance-entretien intégrée aux zones de production.
- La vitesse des engins et des camions est limitée à 15 km/h à l'intérieur du site.
- Etiquetage des produits chimiques et respect des conseils de prudence en cas de manipulation.
- Le site est clôturé sur tout son périmètre pour interdire l'accès à toute personne étrangère à la société.

Etude de danger

- Le confinement des eaux d'extinction incendie est organisé sur la base de vannes d'obturation sur les réseaux d'évacuation d'eau en local et d'un bassin couvrant l'ensemble des zones mitoyennes de l'installation de traitement de surface.
- Le site est équipé d'un système de vidéosurveillance et bénéficie d'un gardiennage pendant les heures de fermeture.
- Les moyens de première intervention (extincteurs) sont répartis dans tous les locaux en fonction des risques à protéger. Les employés ont été formés à l'utilisation de ces moyens.

Par ailleurs, il existe un service QSE composé de 2 collaborateurs, traitant des sujets Qualité, Sécurité, Environnement.

9.2. DISPOSITIONS CONSTRUCTIVES

Bâtiment	Sol	Ossature	Façade	Charpente	Toiture
Galvanisation et extension	Béton	Métallique	Béton, métallique, plastique	Béton et métallique	Métallique type bac acier, fibro- ciment, plastique
Thermolaquage	Béton	Béton et métallique	Métallique	Métallique	Fibro-ciment
Fabrication	Béton	Béton et métallique	Métallique	Métallique	Métallique type bac acier isolé

Tableau 67: Dispositions constructives

9.3. MESURES DE PREVENTION ET PROTECTION SPECIFIQUES AUX ACTIVITES

9.3.1. Mesures de prévention et protection liées à la galvanisation

Les bains de prétraitement et de galvanisation sont étanches et placés sur rétention.

Les fumées du four de galvanisation contiennent des vapeurs de zinc, d'oxydes et de chlorures de zinc, et de chlorures d'ammonium. Elles sont captées et envoyées sur une installation de traitement comportant des filtres à manches régulièrement changés.

9.3.2. Mesures de prévention et protection liées au thermolaquage

Cabine de grenaillage

L'installation de grenaillage permet le décapage de pièces en acier galvanisé par projection de grenaille d'acier.

L'installation est composée :

- D'une cabine de grenaillage avec dispositifs de projection de grenaille,
- D'un convoyeur aérien équipé de crochets pour la manutention des pièces,
- D'un système d'alimentation et de recyclage de la grenaille,

Etude de danger

 D'un système de dépoussiérage d'air à décolmatage automatique situé à l'extérieur sous auvent, accolé à l'atelier.

Après décolmatage, les poussières sont récupérées dans un bac spécifique placé sous le dépoussiéreur ; l'air épuré sera rejeté à l'extérieur.

La projection de grenaille est asservie au fonctionnement de la ventilation.

Les poussières générées par l'installation sont composées :

- De fines particules de grenaille de corindon,
- De fragments et fines particules des pièces traitées en acier galvanisé,
- De fragments et fines particules d'acier provenant de l'usure des certaines pièces métalliques constituant la grenailleuse.

Les pièces grenaillées sont exclusivement des pièces en acier galvanisé. Aucune pièce traitée n'est en aluminium.

La grenaille de corindon utilisée (CORINDON BRUN PREMIUM 95) n'est répertoriée ni inflammable, ni explosive selon la Fiche de données de sécurité.

Mesures de prévention de et de protection :

■ Fonctionnement de l'aspiration avant démarrage du grenaillage.

Cabine de poudrage

La cabine de poudrage permet l'application manuelle de poudre avec présence d'opérateur à l'intérieur de la cabine.

La ventilation est du type vertical (20 000 m³/h).

Elle est calculée pour assurer une concentration maximale de poudre dans la cabine de 10 g/m³ si la LIE est inconnue ou ½ de la LIE si celle-ci est connue.

En cas d'anomalie du système d'aspiration, les distributions de poudre et la haute tension sont automatiquement stoppées et une alarme sonore et lumineuse est activée.

Les moyennes de vitesse d'air dans la cabine sont supérieures à 0,3 m/s.

Mesures de prévention de et de protection :

- L'application de poudre n'est possible que si la ventilation fonctionne,
- La concentration en poussières à l'intérieur de la cabine est systématiquement inférieure à la LIE,
- Un arrêt de la ventilation provoque l'arrêt de l'application,

Etude de danger

Dépoussiéreur de la cabine de poudrage

L'air chargé de poudre de la cabine de poudrage est filtré dans un dépoussiéreur à décolmatage automatique avant d'être rejeté dans l'atmosphère. Le décolmatage des cartouches est réalisé par injection d'air comprimé.

Le dépoussiéreur est équipé d'un évent d'explosion.

En sortie du dépoussiéreur, les poussières sont reprises par un flexible et récupérées au moyen d'un cône dans un sac de récupération placé dans un big bag.

Le dépoussiéreur est situé à l'extérieur sous auvent, accolé à l'atelier peinture.

Mesures de prévention et de protection :

- Fonctionnement de l'aspiration avant démarrage du poudrage,
- Remplacement des filtres tous les ans par le service de maintenance de l'établissement.

Etuve de séchage

La polymérisation des poudres s'effectue dans un four. Les gaines de distribution d'air de soufflage sont disposées en partie inférieure sur toute la longueur de la zone active; la reprise d'air s'effectue en partie haute.

Le brassage d'air assurant l'homogénéité de la température dans le four est réalisé par un ventilateur centrifuge.

La température de fonctionnement est de 180-220°C avec une température maximale de 240°C.

Le chauffage s'effectue par brûleur de gaz naturel.

A l'intérieur de l'atelier, le réseau d'alimentation en gaz propane comprend :

- Une vanne ¼ de tour en entrée du bâtiment
- Une panoplie de régulation gaz avec :
 - 1. filtre avec vanne d'isolement
 - 2. détendeur-régulateur de pression avec manomètre
 - 3. vannes d'allumage et de sécurité
 - 4. pressostat air et gaz
 - 5. coffret de contrôle et de commande avec signalisation lumineuse de marche et de défaut.

Un groupe de ventilation (1 250 m³/h) assure :

- Le prébalayage d'air de l'enceinte avant mise en service du brûleur
- L'extraction et le renouvellement d'air

Le four dispose des systèmes de sécurité suivants :

 Arrêt automatique du chauffage en cas d'arrêt des moteurs des ventilateurs de brassage ou d'extraction

Etude de danger

- Contrôle de la ventilation du circuit de brassage d'air
- Thermostat de surchauffe avec arrêt du chauffage.

Mesures de prévention de et de protection :

- Tuyauterie du réseau gaz peinte en jaune conformément à la norme en vigueur
- Tuyauterie fixée aux structures et positionnées à l'abri des chocs.
- Electrovanne de coupure gaz au niveau du brûleur et asservissement de cette électrovanne au fonctionnement de la ventilation
- Ventilation naturelle de l'atelier

9.3.3. Mesures de prévention et protection liées aux installations de combustion

Le site est alimenté en gaz naturel à partir d'un poste de livraison situé rue de Clos Barrois.

Le gaz naturel est utilisé pour :

- Le four du bain de zinc.
- La chaudière eau chaude,
- Le four de polymérisation (pour la cuisson des pièces).

Mesures de prévention de et de protection :

- Vanne de coupure principale à l'extérieur du bâtiment
- Ventilation naturelle des locaux
- Four de galvanisation :
 - o Détection gaz sur l'alimentation du four de galvanisation :
 - 1er seuil : 20 % LIE : alarme sonore et visuelle
 - 2nd seuil : 40 % LIE : coupure de l'alimentation gaz et électrique
 - o Détection CO au niveau du four de galvanisation
 - Contrat de maintenance détecteurs gaz et CO,
 - Réglages des brûleurs en 2014,
 - Electrovanne de régulation gaz asservie à un pressostat mini/maxi positionné sur le réseau gaz.
 - o Electrovanne de sécurité gaz asservie à la détection gaz.

Chaudière :

- o Détection gaz au-dessus de la chaudière :
 - 1er seuil : 15 % LIE : alarme sonore et visuelle
 - 2nd seuil : 30 % LIE : coupure de l'alimentation gaz
- o Contrat de maintenance du détecteur gaz,
- Entretien annuel du brûleur de la chaudière,
- Electrovanne de sécurité gaz asservie à la détection gaz.

9.3.4. Mesures de prévention et protection liées au stockage de GNR

Le site dispose d'une cuve aérienne de stockage de Gazole non routier (GNR) de 2 m³ et d'une pompe de distribution pour l'alimentation des chariots automoteurs.

Mesures de prévention de et de protection :

Etude de danger

Cuve sur rétention.

9.3.5. Mesures de prévention et protection liées aux postes oxygène/acétylène

L'atelier de galvanisation dispose de postes oxygène / acétylène pour la chauffe des pièces d'acier.

Mesures de prévention de et de protection :

- Usage des postes oxygène/acétylène à l'intérieur de l'atelier,
- Bouteilles maintenues à la verticale,
- Clapet anti-retour sur chaque bouteille et au niveau des raccordements.

9.3.6. Mesures de prévention et protection liées aux postes de charge d'accumulateurs

Les opérations de charge sont effectuées dans plusieurs secteurs de l'établissement : sous 2 auvents et dans l'atelier de thermolaquage. Ils sont implantés dans des zones ventilées, où il est interdit de fumer et où le permis de feu est indispensable.

9.3.7. Mesures de prévention et protection liées au stockage d'huile

Le site dispose de 9 fûts de 200L pour un total de 1800L de produit.

Mesures de prévention de et de protection :

- Les fûts sont disposés sur une cuve de rétention.
- Les aires de stockage du site sont étanches (enrobé)
- Le réseau d'eau pluvial est relié à un bassin de rétention de 457 m³
- Chaque point de rejet d'eau pluvial du site est équipé d'un déshuileur- débourbeur et d'un système d'obturation du réseau

9.4. MOYENS D'INTERVENTION

9.4.1. Moyens de lutte contre l'incendie.

Le site est équipé d'extincteurs en nombre suffisant de manière à assurer une couverture régulière du site.

Le site est entièrement clos sur l'ensemble de sa périphérie et dispose de 2 entrées accessibles aux pompiers :

- 1 entrée personnel et visiteurs rue du Marais Sec,
- 1 entrée camions rue du Marais Sec

Etude de danger

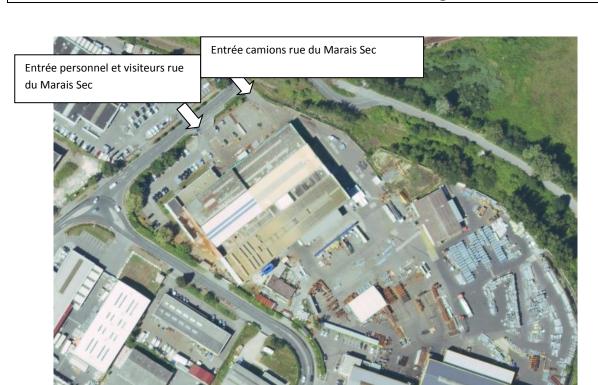


Figure 48 : Accès au site

Source : Google Maps

Les voies de circulation internes sont traitées en voirie lourde et satisfont aux besoins des véhicules des Sapeurs-Pompiers. Les voies de circulation internes sont maintenues libres de tout encombrement susceptible d'entraver la circulation des engins de secours.

Le centre de secours le plus proche est situé 6 allée du Maréchal Gérard à Nogent-sur-Oise, soit à moins de 1,5 km au Nord-Ouest du site.

2 poteaux incendie sont disponibles à proximité du site, rue du Marais Sec, et rue du Clos Barrois.

Il n'y a pas de matières combustibles ou inflammables en quantité en dehors de la cuve de GNR et du gaz naturel. Les bâtiments sont en structure et couverture métalliques ainsi que les pièces galvanisées, présentes à l'intérieur des bâtiments.

Un départ de feu serait donc rapidement maîtrisé faute de combustible.

L'eau utilisée par les équipes d'intervention pour éteindre un incendie et pour refroidir éventuellement les structures et équipements voisins menacés, s'écoule en entraînant les produits de dégradation issus de la combustion.

Ces eaux d'extinction d'incendie joueraient le rôle de vecteur de dispersion et seraient susceptibles de polluer l'environnement si elles ne sont pas confinées, analysées et traitées avant rejet. Afin de ne pas engager une pollution accidentelle des sols et du milieu naturel alentour via les réseaux des eaux pluviales ou usées, la rétention de ces eaux d'incendie est assurée sur le site via le nouveau bassin

Etude de danger

de rétention construit (volume 698 m³), et le bassin existant pour la partie profilage métallerie (volume 457m³)

9.4.2. Moyens de lutte contre les pollutions accidentelles

En cas de fuite légère de produits liquides, des moyens d'absorption sont utilisés. Les produits collectés sont placés dans des bacs étanches en attente de collecte et retraitement par une société spécialisée.

En cas d'épandage plus important, les produits sont collectés par le réseau d'eaux pluviales, et confinés dans le bassin de rétention des eaux pluviales. L'évacuation de ce bassin se faisant par pompe de relevage, leur arrêt assure le confinement.

9.4.3. Plan d'Urgence

Un plan d'urgence crée en juillet 2015 est présent sur le site. Il permet de définir et d'identifier les accidents potentiels et les situations d'urgence, ainsi que les plans d'urgence et consignes associées afin d'être capable de réagir de façon à prévenir et à réduire les impacts environnementaux.

Ce plan d'urgence comporte notamment les éléments suivants :

- Les schémas d'alerte,
- La liste des personnes ayant un rôle particulier à jouer en cas d'accident,
- Le recensement des substances dangereuses,
- Les règles de stockages des produits chimiques,
- Les mesures d'urgence que le personnel devra accomplir,
- Des plans de situation géographique présentant l'environnement des installations,
- Des plans de situation interne présentant l'ensemble des réseaux sur lesquels les services d'intervention pourraient être amenés à opérer...
- Des plans des bâtiments et installations définissant les points d'accès, les principales dispositions à prendre pour une mise en sécurité,

Des simulations aux situations d'urgence sont périodiquement réalisées afin de :

- Vérifier « la capacité à réagir » de l'organisation mise en place,
- Vérifier que les moyens sont définis, opérationnels et efficaces,
- Vérifier la compétence du personnel (prévention, identification de l'incident, communication, traitement de l'incident).

Chaque simulation fait l'objet d'un rapport, rempli par le service QSE, et d'une mise en place, si nécessaire, d'action corrective ou préventive.

9.5. POLITIQUE DE PREVENTION DES ACCIDENTS MAJEURS (PPAM)

Une Politique de Prévention des Accidents Majeurs a été rédigée par AXIMUM.

Cf. annexe 19 Politique de Prévention des Accidents Majeurs